

2011 ANNUAL WATER QUALITY REPORT

Santa Ynez River Water Conservation District, Improvement District No. 1

BOARD OF TRUSTEES:

Division 1 - Los Olivos	Harlan Burchardi
Division 2 - Solvang	Dennis Beebe
Division 3 - Solvang	Lawrence F. Musgrove
Division 4 - Santa Ynez	Harry Poor
At-Large	Karen Carroll

Office Location: 3622 Sagunto Street Santa Ynez, CA 93460 Mailing Address:
P.O. Box 157
Santa Ynez, CA 93460

2011 ANNUAL WATER QUALITY REPORT

Santa Ynez River Water Conservation District, Improvement District No. 1

This report provides a summary of the water quality results from sampling of District water supply wells and State Water supplies for the 2011 calendar year, representative of the water delivered daily to you through your water service connection. Additional information is provided regarding the various sources of your water supply.

Operating under a permit issued by DPH, the District is a public water purveyor to the communities of Santa Ynez, Los Olivos, Ballard, the City of Solvang, and the Santa Ynez Band of Chumash Indians. In accordance with this Water Supply Permit and California Safe Drinking Water regulations, the District routinely tests all ground water sources for a complete set of potential contaminants as well as other water quality constituents. The State Water Project supply is similarly tested by the Central Coast Water Authority (CCWA), following conventional treatment at its Polonio Pass Water Treatment plant, to assure that all water served meets Federal and State drinking water standards. The results of these sampling and monitoring efforts for the 2011 calendar year are included in this report.

District water sources used in 2011:

1) Ground Water – 19 active supply wells

In 2011, the District operated seven of eight active supply wells (Wells 2, 7, 15, 24, 25, 27, and 28) pumping ground water from the Santa Ynez Upland ground water basin. This wedge-shaped area encompasses approximately 130 square-miles which are bounded by the foothills of the San Rafael Mountains to the north, parallels the Santa Ynez River to the south, and narrows east to Red Rock Canyon. District wells in the Upland Basin range in depth from less than 200 feet to over 1,300 feet. The production rate (i.e., flow rate) of these "Upland" wells ranges from 270 to over 1,300 gpm (gallons/minute).

Separated from the southern margin of the Upland Basin by a barrier of impermeable rocks are the water-bearing sand and gravel deposits of the Santa Ynez River. During 2011, the District utilized seven of the eleven active supply wells (Wells 8, 9, 10, 19, 21, 22, and 23) constructed in these alluvial deposits. The production rate of these "River" wells ranges from 150 to 650 gpm. Winter storm damage to transmission piping in one of the District's two river well fields prevented the use of four alluvial wells.

2) Surface Water – State Water Project

While the District still maintains an annual entitlement to water from Cachuma Lake, the only source of surface water served by the District comes from the State Water Project. The District's entitlement from the Cachuma Project is exchanged for an equal amount of State Water under an Exchange Agreement with water agencies on the south coast of Santa Barbara County. In addition to the Cachuma exchanged water, the District also receives State Water directly by entitlement. Surface water from the California Aqueduct is treated at the Polonio Pass Water Treatment plant in Kern County prior to entering the 143-mile long pipeline en route to the District's Mesa Verde Pumping Plant in Santa Ynez. Combined State Water supplies made up approximately 80 percent of the District's total supply in 2011.

The District maintained eight inactive wells during the 2011 calendar year: four wells (Wells 1, 3, 4, and 6) located in the Upland Basin; and four wells (Wells 11, 13, 20, and Gallery Well) located adjacent to the active Santa Ynez River channel. Wells are designated inactive for a variety of reasons including operational restrictions, regulatory requirements, and water quality parameters. One active Upland Basin well (Well 5) was not used in 2011 due to low demand and water use priority issues.

Drinking Water Source Assessments

The 1996 Amendments to the Federal Safe Drinking Water Act established a program called the Drinking Water Source Assessment and Protection (DWSAP) Program to assess all sources of drinking water for vulnerability to contamination and to establish source protection programs. The District has evaluated each of the well locations in the District following the guidelines provided by this program. In summary, potential contaminant sources in

the Upland Basin include septic systems and agricultural drainage. Contaminant sources that have the potential to affect wells located within the Santa Ynez River floodplain include septic systems, other wells (active and abandoned), agricultural drainage, upstream contaminant sources, application of agricultural chemicals, and surface runoff from roads. All completed assessments are available for viewing at the District office.

For 2011, the only contaminant associated with these potential sources that was detected in any of the wells was nitrate. Nitrate was detected in all seven of the active Upland Basin wells utilized, with concentrations ranging from 6.9 to 18 parts per million (ppm). Nitrate was detected in two of the eight active river wells at a concentrations of 2.8 and 4.4 ppm. Annual monitoring of all water supply wells for nitrate is required to assure that concentrations remain below the 45 ppm Maximum Contaminant Level (MCL). Should nitrate concentrations exceed one-half the MCL, more frequent (quarterly) monitoring would be required.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to make drinking water aesthetically pleasing (i.e., protect the odor, taste, and appearance of the water).

Primary Drinking Water Standards (PDWS): MCLs for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect health at the established MCL.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The level of a disinfectant added for water treatment that may not be exceeded at the consumer's tap.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Detection Limit for the Purposes of Reporting (DLRs): The minimum concentration a certified laboratory must detect for a given analytical parameter to comply with State regulations.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Potential Contaminants in Source Water

Federal regulation requires the following information to be included in this report. Because it is general information, it does not necessarily apply to the drinking water provided by the District. Please refer to the summary tables on pages 3-5 below for information specific to your drinking water.

In general, sources of both tap water and bottled water include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that could be present in source water include the following:

- *Microbial contaminants*, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of
 industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff,
 and septic systems.
- *Radioactive contaminants*, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Department of Public Health (DPH) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DPH regulations also establish limits for contaminants in bottled water that require the same level of protection for public health.

Analytical Results

The following summary table of analytical results lists the range and average concentrations of the drinking water contaminants (as well as other water quality constituents) that were detected during the most recently required sampling for each source and constituent listed. As the table illustrates, your tap water met or exceeded all Federal and State drinking water standards. Chemicals and other constituents analyzed but not detected are not included in the report. Additionally, DPH sampling requirements allow for source monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year. Therefore, some of the data listed in the tables, though representative of the source water quality, are more than a year old.

SAMPLING RESULTS: PRIMARY AND SECONDARY STANDARDS

						Drinking \	Wat	er Source	
Parameter	Units	State MCL	PHG (MCLG)	State DLR	Range Average	State Water		Ground Water	Major Sources in Drinking Water
PRIMARY STAND	ARDSN	Mandator	y Health	-Relate	d Standa	rds			
CLARITY					T	T		1	
Combined Filter	NTU		NTU every 4 h		Range	0.04 - 0.09		NA	Soil runoff
Effluent Turbidity		TT=95% (of samples <0.	3 NTU	%	100%		NA	
INORGANIC CHEMICA	ALS								
Aluminum ^b	ppb	1000	600	50	Range	ND - 130		ND - 96	Residue from water treatment process;
Aluminum	ppu	1000	000	50	Average	70		9.6	Erosion of natural deposits
Arsenic	ppb	10	0.004	2.0	Range	ND		ND - 2.4	Erosion of natural deposits; runoff from orchards
711301110	ppo	10	0.001	2.0	Average	ND		0.9	glass and electronic production waste
Barium	ppb	1000	2000	100	Range	ND		ND - 150	Erosion of natural deposits; oil drilling
Sanan	PPS		2000		Average	ND		28.0	and metal refinery wastes
Chromium (Total Cr)	ppb	50	(100)	10	Range	ND		ND - 32	Erosion of natural deposits; steel,
Official and (Total of)	ррь	50	(100)	10	Average	ND		8.2	pulp mills, and chrome plating wastes
Fluoride	nnm	2	1	0.1	Range	ND		ND - 0.19	Erosion of natural deposits;
ridonde	ppm	2	,	0.1	Average	ND		0.2	water additive for tooth health
Nickel	nnh	100	12	10	Range	ND		ND - 10	Erosion of natural deposits; runoff from orchards
Nickei	ppb	100	12	10	Average	ND		1.0	glass and electronic production waste
					Range	ND		ND - 4.1	Runoff and leaching from fertilizer use; leaching
Nitrate + Nitrite (as N)	ppm	10	10	0.4	Average	ND		1.9	from septic tanks and sewage; erosion of natural deposits
					Range	1.8		ND - 18	Runoff and leaching from fertilizer use; leaching
Nitrate (as NO ₃)	ppm	45	45	4	Average	1.8		6.3	from septic tanks and sewage; erosion of natural deposits
RADIONUCLIDES									
					Range	ND		ND - 4.7	Erosion of natural deposits
Gross Alpha ^c	pCi/L	15	NA	1	Average	ND		1.7	
Uranium	pCi/L	20	0.5	1	Range	NC		2.4 - 4.2	Erosion of natural deposits
Urariidili	pc//L	20	0.5	'	Average	NC		3.1	

						Drinking \	Wat	er Source	
		State	PHG	State	Range	State Ground		Ground	
Parameter	Units	MCL	(MCLG)	DLR	Average	Water		Water	Major Sources in Drinking Water

SECONDARY STANDARDS--Aesthetic Standards

Oblasida		F00	NIA		Range	17 - 78	34 - 63	Runoff/leaching from natural deposits;
Chloride	ppm	500	NA		Average	38	46.4	seawater influence
Color (ACU)	Units	15	NA		Range	ND	ND - 9	Naturally-occurring organic materials
COIOI (ACO)	UIIIIS	10	IVA		Average	ND	2.6	Waturally-occurring organic materials
Corrosivity	SI	non-	NA		Range	non-	non-	Balance of hydrogen, carbon, & oxygen in
Corrosivity	اد	corrosive	IVA		Average	corrosive	corrosive	water, affected by temperature & other factors
Iron	nnh	300	NA	100	Range	ND	ND - 270	Leaching from natural deposits;
11011	ppb	300	INA	100	Average	ND	42	industrial wastes
Foaming Agents	nnh	500	NA		Range	NA	ND - 120	Municipal and industrial waste discharge
(MBAS)	ppb	300	INA		Average	NA	12	
Odor Threshold	Units	3	NA	1	Range	1	1 - 2	Naturally-occurring organic materials
Outil Theshold	UIIIIS	3	INA	'	Average	1	1.1	Waturally-occurring organic materials
Specific	µmho/	1600	NA		Range	208 - 467	710 - 1100	Substances that form ions
Conductance	cm	1000	INA		Average	311	889	when in water; seawater influence
Sulfate	nnm	500	NA	0.5	Range	38	13 - 240	Runoff/leaching from natural deposits;
Sullate	ppm	500	INA	0.5	Average	38	121	industrial wastes
Total Dissolved	nnm	1000	NA		Range	123 - 277	400 - 760	Dunofflia shing from natural denosits.
Solids	ppm	1000	INA		Average	190	552	Runoff/leaching from natural deposits;
Lab Turbidity (ID#1)	NITLI	Г	NIA		Range	0.04 - 0.10	ND - 1.03	Call work
Turbidity (State Water)	NTU	5	NA		Average	0.05	0.3	Soil runoff

ADDITIONAL PARAMETERS (Unregulated)

Alkalinity (Total) as	nnm	NA	NA		Range	34 - 70	250 - 330	Runoff/leaching from natural deposits;
CaCO₃ equivalents	ppm	IVA	INA		Average	50	292	seawater influence
Calcium	nnm	NA	NA		Range	22 - 54	41 - 110	Runoff/leaching from natural deposits;
Calcium	ppm	IVA	INA		Average	37	87	seawater influence
Hardness (Total) as	nnm	NA	NA		Range	40 - 96	300 - 490	Leaching from natural deposits
CaCO ₃	ppm	IVA	IVA		Average	68	397	Leaching normatural deposits
Heterotrophic Plate	OFILI	TT	NIA		Range	0 - 2	NC	Nick wells are continued by the constraint and
Count ^d	CFU/mL	TT	NA		Average	0.4	NC	Naturally present in the environment
Magnacium	nnm	NA	NA		Range	6.7	46 - 91	Runoff/leaching from natural deposits;
Magnesium	ppm	IVA	IVA		Average	6.7	60	seawater influence
рН	рН	NA	NA		Range	7.3 - 9.5	7.1 - 8.1	Runoff/leaching from natural deposits;
рп	Units	IVA	IVA		Average	8.3	7.7	seawater influence
Potassium	nnm	NA	NA		Range	1.8	1.4 - 2.4	Runoff/leaching from natural deposits;
Pulassiuiii	ppm	IVA	INA		Average	1.8	2.1	seawater influence
Codium	nnm	NΙΛ	NA		Range	32	32 - 52	Runoff/leaching from natural deposits;
Sodium	ppm	NA	INA		Average	32	42	seawater influence
Total Organic Carbon		TT	NIA	0.20	Range	1.3 - 2.4		Various not real and managed accur-
(TOC) ^e	ppm	TT	NA	0.30	Average	1.8		Various natural and manmade sources.

Constituents of Concern

Boron	nnh	NA	NL=1,000	100	Range	NC	ND - 110	
DUIUII	ppb	IVA	INL=1,000	100	Average	NC	170	
Chromium (. ()		NIA	0.00	1	Range	NC	ND - 32	
Chromium (+6)	ppb	NA	0.02	ı	Average	NC	6.1	
Vanadium	nnh	NA	NL=50	2	Range	NC	ND - 16	
variaulum	ppb	IVA	INL=30	J	Average	NC	10.3	

						Drinking \	Wat	er Source	
		State	PHG	State	Range	State		Ground	
Parameter	Units	MCL	(MCLG)	DLR	Average	Water		Water	Major Sources in Drinking Water

Distribution System Water Quality

MICROBIOLOGICAL

Total Coliform (TC)	5.0% of		Range	0 - 2.5%		
Bacteria ^f	 monthly	0	 Average	0.2%		Naturally present in the environment
CCWA Distribution	samples		Highest	2.5%		
Total Coliform (TC)	> 1 positive		Range		0	
Bacteria ^f	 sample per	0	 Average		<0.5%	Naturally present in the environment
ID#1 Distribution	month		Highest		1	
Fecal Coliform			Range	0 Positives		
and E. Coli	 	0	 Average	0 Positives		Human and animal fecal waste
CCWA Distribution			Highest	0 Positives		
Fecal Coliform	1 positive;		Range		0 Positives	
and E. Coli	 with repeat	0	 Average		0 Positives	Human and animal fecal waste
ID#1 Distribution	TC positive		Highest		0 Positives	

ORGANIC CHEMICALS

Total Tribalamathanas(I	nnh	80	NA	NA	Range	19 - 67	27.2 - 45.0	By-product of drinking water
Total Trihalomethanes ⁹	ppb	00	IVA	IVA	Average	40	40.6	chlorination
Halanastia Asida()	nnh	60	NA	1 2h	Range	8.6 - 18	8.0 - 19.3	By-product of drinking water
Haloacetic Acids ^g	ppb	00	IVA	1,2"	Average	14	13.3	chlorination

DISINFECTION

Total chlorine residual		MRDL =	MRDLG =	Range	1.3 - 3.1		Measurement of the disinfectant
CCWA Distribution	ppm	4.0	4.0	 Average	2.2		used in the production of drinking water
Free/total chlorine residual		MRDL =	MRDLG =	Range		0.2 - 2.3	Measurement of the disinfectant
ID#1 Distribution	ppm	4.0	4.0	 Average		1.4	used in the production of drinking water

Abbrevations and Notes

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and is a good indicator of the effectiveness of a filtration system.Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 200 ppb.
- (c) Gross alpha particle activity monitoring required every nine years. Reported average represents highest running source average.
- (d) Pour plate technique -- monthly averages.
- (e) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (f) Total coliform MCLs: No more than 5.0% (State Water) or 1 sample (ID#1) of the monthly samples may be Total Coliform positive. Thess MCLs were not violated in 2010. All required follow-up and confirmation samples collected in response to each of the positive Total Coliform samples were absent for Total Coliform.
- (g) Compliance based on the running guarterly annual average of distribution system samples.
- (h) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

Abbreviations

ACU = Apparent Color Units

CCWA = Central Coast Water Authority

CFU/ml = Colony Forming Units per milliliter

ID#1 = Santa Ynez River Water Conservation District, Improvement District No.1

NA = Not Applicable

NC = Not Collected

NL = Notification Level

NTU = Nephelometric Turbidity Units

pCi/L = PicoCuries per liter

ppb = parts per billion, or micrograms per liter (μ g/L)

ppm = parts per million, or milligrams per liter (mg/L)

TOC = Total Organic Carbon

µmho/cm = micromhos per centimeter

(unit of specific conductance of water)

Additional Information Regarding Your Drinking Water

Recommendation for Customers with Special Water Needs

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Chloramine Treatment

As a reminder, water from the State Water Project that is served throughout the District is disinfected with chloramines as the final step in the raw water treatment process. Chloramine treatment is an effective disinfectant and its use has resulted in reduced taste and odor complaints. While chloramines do not pose a health hazard to the general population, they can be dangerous to people undergoing kidney dialysis unless the chloramines are reduced to acceptable levels. Dialysis patients should already be aware of this concern and be taking the proper precautions when receiving dialysis treatment. Additionally, **chloraminated water is toxic to fish**. Local pet and fish suppliers should be contacted to obtain the necessary treatment for chloraminated water to assure it is safe for fish.

	SAMPLIN	NG RESUL	TS: ID#1 D	ISTR	BUTION	SYSTEM MONIT	ORING	
Microbiological Contaminants	No. of Samples Required*	No. of Samples Collected	Highest Number of detections		f months iolation	MCL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	156	204	(In a mo.)	· ·		More than 1 sample in a month with a detection		Naturally present in the environment
Fecal Coliform or <i>E. coli</i>	156	204	(In the year)		0	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>	0	Human and animal fecal waste
Lead and Copper**	No. of samples collected	90 th percentile level detected	No. Sites exceeding AL	AL	MCLG	Typical Sour	ce of Cont	aminant
Lead (ppb)	20	ND μg/L	0	15 2		Internal corrosion of he systems; discharges fro manufacturers; erosion	om industri	al
Copper (ppm)	20	0.21 mg/L	0	1.3 0.17		Internal corrosion of household water plumbing systems; erosion of natural deposits; leaching from wood preservatives.		

^{*} Three bacteriological samples per week are required based on the number of District service connections, as specified in the California Code of Regulations (CCR), Chapter 15, Title 22 (Domestic Water Quality and Monitoring). The District optionally monitors bacteria at four locations weekly to assure representative sampling of the entire distribution system.

Cross-Connection Control Program

The term <u>cross-connection</u> is defined as "any unprotected <u>actual</u> or <u>potential</u> connection between a potable water system and any other water system or source through which it is possible to introduce any used water, industrial fluid, gas, or other contaminant into the potable system." Cross-connections jeopardize the water quality of the District's distribution system due to the potential for backflow of contaminated water to the distribution system by way of: 1) backpressure, or 2) backsiphonage. A backpressure condition occurs when water pressure in the downstream (customer) piping is greater than the supply system pressure, potentially causing a reversal of the

^{**} Sampling requirements are specified in the Lead and Copper Rule, CCR, Title 22 and are based on the population served. Samples are obtained from a representative sampling of customer's internal plumbing. Following initial sampling specified in CCR, Title 22, Chapter 17.5, representative sampling for lead and copper is required once every three years. The data summary displayed in the above table is from data obtained in August of 2009. The next scheduled sampling for lead and copper is in the summer of 2012.

normal direction of flow. Backsiphonage is a form of backflow caused by a sudden reduction in supply system pressure (e.g., fire hydrant flow, water main break, undersized water supply piping, etc.) that can cause a suction affect at the customer service connection.

As many of our agricultural, residential, and commercial customers know, the District has an active program requiring the installation and maintenance of backflow prevention devices, where "an actual or potential cross-connection" exists, to protect and ensure safe water quality within our distribution system. Resolution No. 482 establishes the District's Cross-Connection Control Program to assure compliance with California Department of Health Services regulatory requirements (17 CCR, Section 7584) and to prevent the contamination of our distribution system. For additional information regarding this program, pick up a copy of our free color cross-connection control brochure or the District's Cross-Connection Control policy at the District office, located in Santa Ynez at 3622 Sagunto Street.

Surface Water Supply – The State Water Project

As stated above, the surface water from State Water Project (SWP) made up approximately 80 percent of the District's water supply for 2011. Runoff from the Sierra Nevada watershed travels more than 500 miles through the rivers, pipelines, and aqueducts that make up the SWP before reaching the District's Mesa Verde Pumping Station. This "State" water is treated at the Polonio Pass Water Treatment Plant (PPWTP), a 43 million-gallon per day conventional water treatment facility, designed and constructed to treat and purify all SWP water served to San Luis Obispo and Santa Barbara Counties. The operation of the plant is the responsibility of the Central Coast Water Authority (CCWA), an agency formed in 1991 to finance, construct, and operate State water treatment and delivery facilities on behalf of all Santa Barbara County participants in the State Water Project. CCWA conducts weekly testing of the treated State water at numerous locations along its 143-mile pipeline en route to Santa Ynez to assure the delivery of the highest quality treated water to their (and our) customers. For more information about the treatment and delivery of State water, please visit the CCWA web site at the following internet address: www.ccwa.com.

Attention Landlords and Other Property Managers:

We recommend that landlords and other property managers display this report in a public location such as a lobby, laundry room, or community room. If you would like to receive additional copies of this report, please contact the District office at (805) 688-6015.

EPA Safe Drinking Water Hotline

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects in drinking water is available on-line at the U.S. Environmental Protection Agency's (EPA) Safewater website at http://www.epa.gov/safewater on the Internet or by calling the EPA Safe Drinking Water Hotline (1-800-426-4791).

Public Participation

If you are interested in learning more about your water supply, District customers and other members of the public are invited to attend the regularly scheduled meetings of the Board of Trustees on the **third Tuesday of each month**, 6:30 P.M., at the District Office, 3622 Sagunto Street, Santa Ynez.

Knowing that water quality is important to our customers, District personnel appreciate this opportunity to communicate our efforts and successes in delivering a reliable, high quality drinking water. We are interested in hearing from you regarding any concerns or suggestions you may have pertaining to this report or any other water quality or supply issues. For additional information or comments regarding your water quality, please contact Eric Tambini, Assistant General Manager, at the District office [(805) 688-6015].

<u>Our Mission Statement</u>: To provide the residential and agricultural customers in the Santa Ynez River Water Conservation District, Improvement District No.1 (District) service area with a reasonably priced, reliable, high quality water supply, and efficient and economical public services.

Source Water Protection Tips for our Customers

Each individual living within the watersheds of the Santa Ynez River and the Upland Groundwater Basin shares in the responsibility for the protection of local drinking water supplies. Ways for you to help protect your community's drinking water sources include the following:

- Eliminate excess use of lawn and garden fertilizers and pesticides they contain hazardous chemicals that can reach your drinking water source.
- Pick up after your pets.
- If you have your own septic system, properly maintain your system to reduce leaching into the shallow aquifer.
- Dispose of used and waste chemicals properly. For example, take used motor oil to a recycling center.

Water Conservation Tips for our Customers

Statistics show that the average U.S. household uses approximately 400 gallons of water per day. Fortunately, there are many low-cost ways to conserve water. Small changes in water usage can make a significant difference in your water consumption (and water bill) over time. Some water conservation measures you can use include, but are not limited to, the following:

- Take short showers (using a low-flow shower head) a 5 minute shower uses 7 to 8 gallons of water compared to up to 50 gallons for a bath.
- Shut off water while brushing your teeth, washing your hair, and shaving, and save up to 500 gallons a month.
- Use a water-efficient showerhead. They are inexpensive, easy to install, and can save you up to 750 gallons a month.
- Run your clothes washer and dishwasher only when they are full. You can save up to 1,000 gallons a month.
- Water plants only when necessary.
- Fix leaking toilets and faucets. Faucet washers are inexpensive and take only a few minutes to replace. To check your toilet for a leak, place a few drops of food coloring in the tank and wait. If it seeps into the toilet bowl without flushing, you have a leak. Fixing it or replacing it with a new, more efficient model can save up to 1,000 gallons a month.
- Adjust sprinklers so only your lawn is watered. Apply water only as fast as the soil can absorb it and during the cooler parts of the day to reduce evaporation.
- Teach your kids about water conservation to ensure a future generation that uses water wisely. Make it a family effort to reduce next month's water bill!
- Visit www.epa.gov/watersense for more information.