<mark>Water Quality</mark> In Guadalupe

The City of Guadalupe is working hard to produce the highest quality drinking water for our customers.

The City receives water from two sources – ground water wells and State surface water (through membership in the Central Coast Water Authority). Both sources are monitored and assessed in accordance with government standards and monitoring requirements. Checking water quality and identifying potential problems is one of our primary goals. We are proud to say that the water delivered to your home in 2012 complied with all State and Federal drinking water requirements.

The City prepares an annual report to inform customers of the quality of water being delivered. This report contains data from January 1, 2012 to December 31, 2012 testing results. It shows that the water delivered to your home complied with regulatory standards and is reliable for domestic use.

For more information about this report or for questions about any topic related to water and water quality, please contact Jaime Vidales, City of Guadalupe Water Department Supervisor, at (805) 356-3890.

Este informe contiene información importante sobre su agua de beber y como cumple con los estándares estatales y federales. Tradúzcalo o hable con alguien que lo entienda bien. Si no encuentra la manera de entender este reporte, por favor contacte a Jaime Vidales del departamento de agua de la Ciudad de Guadalupe al (805) 356-3890.

City of Guadalupe Water Pumping Station

The City of Guadalupe water system consists of two pumping stations, active and standby wells, three water storage tanks, and various water mains. Safe treatment and distribution of water is our daily goal. Maintaining pumping stations, tanks, and water mains is vital to achieving that goal. The City has security measures in place to ensure that our water supply is delivered to our residents safely and efficiently.

City of Guadalupe 1.6 Million Gallon Tank

City of Guadalupe 2012

WATER QUALITY REPORT

This report provides information regarding the quality of drinking water for the City of Guadalupe during 2012. Included are details about where your water comes from, what it contains, and how it compares to established drinking water standards.

918 Obispo Street-Guadalupe, CA 93434 (805) 356-3890 www.ci.guadalupe.ca.us jvidales@ci.guadalupe.ca.us

CITY OF GUADALUPE WATER SOURCE DETECTIONS (FROM ACTIVE WATER WELLS)

		TABLE	1 - SAMPLIN	G RESULT	S FOR MIC	ROBIOLO	GICAL CO	NTAMINATION	1	
Microbial Contaminant		Highest No. o				MCL		PHG	Major Sources of Bacteria	
		Detections in month	a in Violation	1			(MCLG			
Total Coliform B	acteria	1	0		5% of Mo	onthly Samples Po	sitive	0	Natural Present in the Environment	
Fecal Coliform or	· E.coli	0	0	· ·					Human and animal fecal waste	
				~		er sample detects				
	r	1			G RESULT					
Lead and Copper	*Date	No. of Sample Collected	dete	entile level ected	No. of Sites Exceeding A	L	PHG (MCLG)	••	Typical Source of Contaminant	
Lead (ppb)	8/2011	20	N	D	0	15	0.2	Internal corrosion of household water plumbing systems; dischar from industrial manufacturers; erosion of natural deposits		
Copper (ppb) 8/2011		20	1	10	0		170	Trom industrial manufacturers; erosion of natural deposits Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives		
			TABLE 3 – SA	MDI INC I	DECHITCE	OP SODIU			feaching from wood preservatives	
Chemical or Constituent (and reporting units)		*Sample Date	Average Level Detected	Range of 1		MCL	PHG (MCLG)		Source of Contaminant	
Sodium (ppm)		3/15/11	42	4	2	None	None	None Salt present in the water and is generally naturally occurring		
Hardness (ppm)		3/15/11	420	42	20	None	None		cations present in the water, generally	
									um, and are usually naturally occurring	
							<u>MARY</u> DRI	NKING WATER		
Chemical or constituent (and reporting		*Sample Date	Average Level Detected	Range of Detection		PHG (MCLG)	Major Sources in Drinking Water		
units) Total Trihalomethanes (ppb)		10/9/12	23.3	21.7 - 24.8	80	N/A		By-product of drinking water disinfection		
Haloacetic Acid		10/9/12	5.5	4.8 - 6.1	60	N/A		By-product of drinking water disinfection		
Arsenic (pj	ob)	3/15/11	ND	ND	10	.004	Erosi		off from orchards; glass and electronics action wastes	
Fluoride (ppm)		3/15/11	0.21	0.21	2	1		f natural deposits; water ad from fertilizer a	ditive that promotes strong teeth; dischar nd aluminum factories	
Nitrate as NO3 (ppm)		11/29/12	ND	ND	45	45	Runoff ar		use; leaching from septic tanks and sewag m natural deposits	
Nitrite as N (ppb)		3/15/11	480	480	10000	10000	Runoff ar	d leaching from fertilizer	ise; leaching from septic tanks and sewag m natural deposits	
Total Chlorine Residual		Daily	153	126 - 1.63		MRDLG =	4.0 1	Drinking water disinfectant	added for potable water treatment	
(ppm) Uranium (pCi/L)		4/26/11	(Monthly Avg.) 2.7	(Monthly Range 2.7	20	0.43		Erosion o	f natural deposits	
Gross Alpha (pCi/L)		3/1/11, 8/2/11	5.2	4.5 - 5.9	4.5 - 5.9 15			Erosion o	f natural deposits	
		SAMDI INC	DESULTS OF		AINA NTS W	TH SECO		RINKING WATI		
Chemical constituent (and	or	*Sample Date	Average Level Detected	Range of Detection	MCL	PHG (MCLG			s in Drinking Water	
units) Chloride (ppm)		3/15/11	19	19	500	N/A		Runoff/leaching from nat	ural deposits; seawater influence	
Color (ACU)		3/15/11	ND	ND	15	N/A		Natural -occur	ring organic materials	
Corrosivity (SI)		Non-Corrosive	Non-Corrosive	Non-Corrosi	ve N/A	N/A	Natural	Natural or industrially-influenced balance of hydrogen, carbon and oxygen i the water; affected by temperature and other factors.		
Iron (ppb)		3/15/11	ND	ND	300	N/A		Leaching from natura	l deposits; industrial wastes	
Manganese (ppb)		3/15/11	ND	ND	50	N/A		Leaching fro	om natural deposits	
Odor Threshold (TON)		3/15/11	1	1	3	N/A		Naturally-occurring organic materials		
Specific Conductance (µmho/cm)		3/15/11	940	940	1600	N/A		Substances that form ions when in water; seawater influence		
Sulfate (ppm)		3/15/11	280	280	500	N/A		Runoff/leaching from natural deposits; industrial wastes		
Total Dissolved Solids (ppm)		3/15/11	640	640	1000	N/A		Runoff/leaching from natural deposits		
Turbidity (NTU)		3/15/11	ND	ND	5	N/A		Soil runoff		
	I	ТАТ	BLE 6 – SAMPI	UNG RES	ULTS OF U	NREGULA	TED CONT	AMINANTS		
Chemical or constituent (and reporting		Sample Date	Average Level Detected	Range of Detection	MCL	PHG (MCLG		Major Sources in Drinking Water		
units Alkalinity (p	(pm)	3/15/11	210	210	N/A	N/A		Runoff/leaching from nat	ural deposits: seawater influence	
Bicarbonate (3/15/11	260	260	N/A N/A	N/A N/A		Runoff/leaching from natural deposits; seawater influence		
Calcium (p	om)	3/15/11	120	120	N/A	N/A		Runoff/leaching from natural deposits; seawater influence		
		3/15/11	ND 40	ND 40	500	N/A		Municipal and industrial waste discharges		
MBAS (pp	uom)			40	N/A N/A	N/A N/A		Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; seawater influence		
Magnesium (3/15/11			N/A N/A	N/A N/A		Runoff/leaching from nat		
Magnesium (pH (units	s)	3/15/11 3/15/11	2.3	2.3	IN/A				ural deposits; seawater influence	
Magnesium (s) opm)	3/15/11	2.3				JANTS WU	TH NOTIFICAT		
Magnesium (pH (unit: Potassium (p Chemical constituent (and	s) ppm) TABLE or	3/15/11	2.3		GULATED (NL			TH NOTIFICAT Possible		
Magnesium (pH (units Potassium (p	s) ppm) TABLE or reporting	3/15/11 E 7 – SAMPLI	2.3 NG RESULTS Average Level	OF UNRE Range of	GULATED (NL	CONTAMI PHG) Babies o	Possible f some pregnant women w otification level may have a	ION LEVELS Health Effects ho drink water, containing boron in exce: n increased risk of developmental effect:	
Magnesium (pH (units Potassium (p Chemical constituent (and units	s) ppm) TABLE or I reporting b)	3/15/11 E 7 – SAMPLIN *Sample Date	2.3 NG RESULTS Average Level Detected	OF UNRE Range of Detection	GULATED (NL s	CONTAMI PHG (MCLG) Babies o of the no Babies o	Possible f some pregnant women w btification level may have a based on studies f some pregnant women w ttification level may have a	ION LEVELS	

* The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, are more than one year old.

NOTE: All results represent raw water from our active water wells, except microbiological, Lead and Copper, Trihalomethanes and Haloacetic Acids, and Chlorine Residuals, which were taken at various distribution points within the city.

PURCHASED SURFACE WATER **CENTRAL COAST WATER AUTHORITY**

			U			TREATER			
Parameter	Units	State	PHG	State	Range	TREATED CCWA	SOURCE STATE	Major Sources in Drinking Water	
arameter	Cints	MCL	(MCLG)		Average	PPWTP	WATER	Major Sources in Drinking Water	
RIMARY STANDARDS-	Mandator								
Clarity (a)									
Combined Filter Effluent	NTU		NTU every 4		Range	0.04 - 0.13	NA	Soil runoff	
Furbidity		TT=95%	of samples <	0.3 NTU	%	100%	NA		
NORGANIC CHEMICALS	1		0.6	0.05		ND 0.10	NF 0.001		
Aluminum	ppm	1 (b)	0.6	0.05	Range	ND - 0.12 0.069	ND - 0.081 0.046	Residue from water Treatment process; Erosion of natural deposits	
Nitrate as Nitrogen	ppm	10	10	0.4	Average Range	0.069	0.49	Runoff and leaching from fertilizer use; leaching from septic	
Niti ate as Niti ogen	ppm	10	10	0.4	Average	0.49	0.49	tanks and sewage; erosion from natural deposits	
Nitrate as NO3	ppm	45 (h)	45	2	Range	2.2	2.1	Runoff and leaching from fertilizer use; leaching from septic	
	PP···	(11)	10	-	Average	2.2	2.1	tanks and sewage; erosion from natural deposits	
RADIONUCLIDES									
Gross Alpha Particle	pCi/L	15	(0)	3	Range	4.0	3.5	Erosion of natural deposits	
_					Average	4.0	3.5		
DISTRIBUTION SYSTEM N	MONITOI	RING							
Fotal Chlorine Residual	ppm	MRDL=	MRDL	NA	Range	1.5 - 3.1	NA	Measurement of the disinfectant used in the production of	
		4.0	G=4.0		Average	2.2	NA	drinking water	
Total Trihalomethanes (d)	ppb	80	NA	NA	Range	20 - 77	NA	By-product of drinking water chlorination	
		<i>c</i> 0			Average	46	NA		
Haloacetic Acids (d)	ppb	60 (e)	NA	NA	Range	5.4 - 17	NA	By-product of drinking water chlorination	
		C C L	1		Average	11	NA		
SECONDARY STANDARDS		tic Standard	T	274	D	46 146	42 141		
Chloride	ppm	500	NA	NA	Range Average	46 - 146 86	42 - 141 83	Runoff/leaching from natural deposits; seawater influence	
Color	ACU	15	NA	NA	Range	ND	15	Naturally-occurring organic materials	
Color	ACU	15	INA	INA	Average	ND	15	Naturally-occurring organic materials	
Iron, Total	ppb	300	NA	100	Range	ND	210	Balance of hydrogen, carbon, & oxygen in water, affected by	
iron, rotar	ppo	500	1471	100	Average	ND	210	temperature & other factors	
Odor Threshold	TON	3	NA	1	Range	ND	ND - 6	Naturally-occurring organic materials	
		-		-	Average	ND	1.5		
Specific Conductance	μmho	1600	NA	NA	Range	344 - 706	298 - 694	Substances that form ions when in water; seawater influence	
	s/cm				Average	522	486	,	
Sulfate	ppm	500	NA	0.5	Range	71	39	Runoff/leaching from natural deposits; industrial wastes	
					Average	71	39		
Total Dissolved Solids	ppm	1000	NA	NA	Range	202 - 417	175 - 656	Runoff/leaching from natural deposits	
(TDS)					Average	308	296		
Turbidity (Monthly)	NTU	5	NA	NA	Range	0.04 - 0.1	0.44 - 7.2	Soil runoff	
					Average	0.05	1.6		
ADDITIONAL PARAMETE	-				5	16 06	54 00		
Alkalinity (Total) as	ppm	NA	NA	NA	Range	46 - 86	54 - 98	Runoff/leaching from natural deposits; seawater influence	
CaCO3 equivalents		NA	NA	NA	Average	67 30 - 76	73 32 - 78	Runoff/leaching from natural deposits; seawater influence	
Calcium	ppm	NA	NA	NA	Range	49	49	Runon/leaching from natural deposits; seawater influence	
Hardness (Total) as CaCO3	ppm	NA	NA	NA	Average Range	64 - 156	64 - 160	Leaching from natural deposits	
Hardness (Total) as CaCO3	ppm	1474	1471	1421	Average	101	102	Leaening nom natural deposits	
Heterotrophic Plate Count	CFU/	TT	NA	NA	Range	0-4	NA	Naturally present in the environment	
(f)	mL				Average	0.6	NA	····· · · · · · · · · · · · · · · · ·	
Magnesium	ppm	NA	NA	NA	Range	13	12	Runoff/leaching from natural deposits; seawater influence	
5					Average	13	12	Ç,	
pH	pH	NA	NA	NA	Range	7.2 - 8.8	7.1 - 9.6	Runoff/leaching from natural deposits; seawater influence	
	Units				Average	8.3	8.6	- •	
Potassium	ppm	NA	NA	NA	Range	2.6	2.6	Runoff/leaching from natural deposits; seawater influence	
					Average	2.6	2.6		
Sodium	ppm	NA	NA	NA	Range	62	48	Runoff/leaching from natural deposits; seawater influence	
					Average	62	48		
Total Organic Carbon	ppm	TT	NA	0.30	Range	1.4 - 2.4	2.2 - 4.1	Various natural and manmade sources	
(TOC) (g)	1	1	1	1	Average	1.8	2.8		

 (TOC) (g)
 Average

 Footnotes: Abbreviations
 (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system. Monthly turbidity values are listed in the Secondary Standards section.
 (b) Aluminum has a Secondary MCL of 200 ppb.

 (c) Total coliform MCLs: No more than 5.0% of the monthly samples may be Total Coliform positive. Fecal coliform/*E. coli* MCLs: The occurrence of 2 consecutive Total Coliform positive samples, one of which contains fecal coliform/*E. coli* MCLs: The accurrence of 2 consecutive Total Coliform positive samples, one of which contains fecal coliform/*E. coli* monthly tamping an acute MCL violation.

 (d) Compliance based on the running quarterly annual average of distribution system samples.
 (e) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

 (f) Pour plate technique – monthly averages.
 (g) TOCs are taken at the treatment plant's combined filter effluent. pCi/L = PicoCuries per liter

 (h) State MCL is 45 mg/L as nitrate, which equals 10 mg/L as N. PHG = Public Health Goal
 (h) Care filter of the filter of the filter of the filter filt

(h) State MCL is 45 mg/L as nitrate, which equals ' AL = Regulatory Action Level ACU = Apparent Color Units CCWA= Central Coast Water Authority CFUmI = Colony Forming Units per milliliter DHS = Department of Health Services DLR = Detection Level for purposes of Reporting MCL = Maximum Contaminant Level Goal MFL = Million Fibers per Liter MRDL = Maximum Residual Disinfectant Goal MFL = Million Fibers per Liter MRDL = Maximum Residual Disinfectant Goal MA = Not Applicable NC = Not Collected NL = Notification Level NTU = Nepeloometric Turbidity Units pCi/L = PicoCuries per liter PHG = Public Health Goal

ppb = parts per billion, or micrograms per liter (µg/L) ppm = parts per million, or milligrams per liter (µg/L) PPVTP = Polonio Pass Water Treatment Plant SI = Saturation Index TOC = Total Organic Carbon TT = Treatment Technique UCMR = Unregulated Contaminant Monitoring Regulation µmho/cm = micromhos per centimeter (unit of specific conductance of water).

WATER QUALITY IN GUADALUPE

The sources of safe drinking water (both tap water and bottled water) include rivers, streams, reservoirs, springs, and wells. As water travels over the surface of the earth or through the ground, it dissolves naturally occurring minerals and in some cases hazardous materials. It can also pick up substances resulting from human activity or the presence of animals.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria that may come from septic systems, sewage treatment plants, agricultural livestock, and wildlife.

Inorganic contaminants, such as salts and metals that can be naturally-occurring or result from storm water runoff, industrial or domestic wastewater discharge, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agricultural and urban storm water runoff as well as residential use.

Organic chemical contaminants, including synthetic and volatile organic chemicals that are byproducts of industrial processes and petroleum production and can also come from gas stations, urban storm water runoff, agricultural applications, and septic systems.

Radioactive contaminants which can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (USEPA) and the California Department of Public Health, (CDPH) prescribe regulations that limit the amount of certain contaminants in drinking water provided by public systems. USEPA and CDPH regulations also establish limits for contaminants in bottled water.

In 2012, the City of Guadalupe received 43.66% of its water supply from the State water project (Central Coast Water Authority). Surface water is treated at the Polonio Pass Water Treatment Plant. For details on the treatment process of the State water project, please call the City of Guadalupe Water Department Supervisor at (805) 356-3890.

Definitions

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to public health goals as economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. The addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health.

 Primary Drinking Water Standards (PDWS): MCLs or MRDLs for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.
Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, and appearance of drinking water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.
Regulatory Action Level (AL): The concentration of a contaminant that a water system must not exceed.

Additional Information on Drinking Water

Drinking water, both tap water and bottled water, may reasonably contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a risk to health. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at the number below. Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as cancer patients undergoing chemotherapy, persons who have undergone organ transplants, who have HIV/AIDS or other immune system disorders, and some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA and Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium or microbial contaminants are available from the Safe Drinking Water Hotline at 800-426-4791 or at www.epa.gov/safewater/resource.

City of Guadalupe-Chemicals Used for Disinfection

The City of Guadalupe uses chloramines as a primary form of disinfection. Chloramines are a state and federally approved alternative to chlorine for water disinfection. Chloramines minimize disinfection byproduct formation. Another benefit of chloramines is improved taste of the drinking water as compared to chlorine. Chloramines are used by many water utilities. Chloramines have the same effect as chlorine for typical water use with the exception that chloramines must be removed from water used in kidney dialysis and for fish tanks and aquariums. Treatments to remove chloramines from water are different than treatments for removing chlorine. Please contact your physician or dialysis specialist for questions pertaining to kidney dialysis water treatment. Contact your pet store or veterinarian for questions regarding water used for fish and other aquatic life. You may also call 800-111-2222 for additional chloramine information.

City of Guadalupe Water Assessment

An assessment of the drinking water sources for the City of Guadalupe found that they are most vulnerable to the following activities associated with potential contaminants in the water supply – runoff and leaching from fertilizer use plus the erosion of natural mineral deposits.

Detection of Contaminants Summary

Nitrate: Due to high concentrations of Nitrates found in the water from one of our wells in the last few years, including 2012, the City does not regularly use this source and will only use this source in an emergency. Nitrate in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such Nitrate levels in drinking water can interfere with the capacity of an infant's blood to carry oxygen, resulting in serious illness. Symptoms include shortness of breath and blueness of the skin. Nitrate levels above 45 mg/L may also affect the ability of blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant or you are pregnant, you should ask advice from your health care provider.

Lead: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Guadalupe is responsible for providing quality drinking water, but the City cannot control the variety of materials used in plumbing components. If the water in your home has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may want to have your home water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791 or at http://www.epa.gov/safewater/lead

Trihalomethanes (THMs) and Haloacetic Acids (HAA5s): The City has been monitoring these contaminants with direction by state regulatory agencies. There is detection of these contaminants in our water. THMs and HAA5s are disinfection byproducts. They are produced when a disinfectant like chlorine or chloramine is added to drinking water and organic matter is present. Some people who drink water containing THMs and HAA5s in excess of the MCL over many years may experience liver, kidney or central nervous problems and may have an increased risk of cancer. For more information on disinfection byproducts please call the Safe Drinking Water Hotline at 800-426-4791 or visit http://water.epa.gov/drink/contaminants/basicinformation/ disinfectionbyproducts.cfm

About Water Blending: The City combines well water with State surface water to offset any contaminants that may be present in either source and to ensure that the water delivered to your home meets all State and Federal drinking water requirements.

For questions: Please call Jaime Vidales at the City of Guadalupe Water Department, (805) 356-3890.

Public Participation Opportunities: The Guadalupe City Council meets every 2nd and 4th Tuesday of the month at the Council Chambers located at 918 Obispo St. Guadalupe, CA.