2014 Water Quality Report

This report reflects water quality testing conducted during 2013

Your 2014 Water Quality Report

The City of El Monte is committed to keeping you informed about the quality of your drinking water. This water quality report is provided to you annually. It includes information describing where your drinking water comes from, the constituents found in your drinking water and how the water quality compares with the regulatory standards.

Questions About the Quality of Your Water? Contact Us for Answers.

For more information or questions regarding this report, please contact Mr. Victor Jimenez at 626-580-2250. Regularly scheduled meetings of the City of El Monte's City Council are held on the second and fourth Tuesday of each month at 5:00 pm at 11333 East Valley Boulevard, El Monte, California, 91731-3293. These meetings provide an opportunity for public participation in decisions that may affect the quality of your water.

The Quality of Your Water is Our Primary Concern

Where Does Our Drinking Water Come From?

The City of El Monte's water supply comes from groundwater in the Main San Gabriel Groundwater Basin extracted by production wells located in the City of El Monte. The water is disinfected with chlorine before it is delivered to your home.

What Is the Quality of Our Drinking Water?

The City of El Monte routinely tests for chemical and biological contaminants in your drinking water in accordance with the United States Environmental Protection Agency (USEPA) and the California Department of Public Health (CDPH) monitoring requirements.

The chart in this report shows the results of our testing for the year 2013. The State allows us to test for some contaminants less than once per year because the concentrations of these contaminants in groundwater do not change frequently. Some of our data, although representative, are more than one year old. The chart lists all the contaminants detected in your drinking water that have Federal and State drinking water standards. Detected unregulated contaminants of interest are also included.

During 2013, drinking water provided by the City of El Monte met or surpassed all Federal and State drinking water standards. We remain dedicated to providing you with a reliable supply of high quality drinking water.

What Contaminants May Be Present in the Sources of Our Drinking Water?

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

How Residential Water is Used throughout Southern California

Outdoor watering of lawns and gardens makes up approximately 60% of home water use.

By cutting your outdoor watering by 1 or 2 days a week, you can dramatically reduce your overall water use.

Data is representative of average consumption; your water usage may vary.

Clothes Washers: 9% Dishwashers: 1% Faucets: 6%

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
 - Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
 - **Pesticides and herbicides**, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
 - **Radioactive contaminants**, that can be naturally-occurring or be the result of oil and gas production and mining activities.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum

production, and can also come from gasoline stations, urban stormwater runoff, agricultural application and septic systems.

> Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline, 800-426-4791, or by visiting them on the web at www.epa.gov/safewater/.

Conservation Tips for Inside Your Home

Wash only full loads of laundry and dishes Saves up to 50 gallons per week

Fix household leaks promptly **Saves up to 20 gallons per day**

Spend only 5 minutes in the shower *Saves up to 8 gallons each time*

Turn off the water while you brush your teeth Saves up to 2.5 gallons per minute

Buy water-saving devices like high-efficiency toilets and clothes washers. You'll save many gallons of water per day, and many of them are eligible for rebates. To learn more, visit www.bewaterwise.com.

Talk to your family and friends about saving water. If everyone does a little, we all benefit a lot.

Are There Any Precautions the Public Should Consider?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, elderly persons, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers.

USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline at 800-426-4791.

About Lead in Tap Water

If present, elevated levels of lead can cause serious problems, especially for pregnant women and young children.

Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of El Monte is responsible for providing high

quality drinking water, but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or

cooking. If you are concerned about lead in your water, you may wish to have your water tested.

Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 800-426-4791, or on the web at http://water.epa.gov/drink/info/lead/index.cfm.

About Nitrate

Although nitrate in your drinking water never exceeds the MCL of 45 milligrams per liter (mg/L), nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

Nitrate in drinking water at levels above 45 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in a serious illness; symptoms include shortness of breath and blueness of the skin.

Nitrate levels above 45 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask for advice from your health care provider.

Drinking Water Source Assessments

In accordance with the Federal Safe Drinking Water Act, an assessment of the drinking water sources for the City of El Monte was completed in December 2002. The purpose of the drinking water source assessment is to promote source water protection by identifying types of activities in the proximity of the drinking water sources which could pose a threat to the water quality.

Water your lawn 1 to 2 days a week instead of 5 days a week Saves up to 840 gallons per week

Check your sprinkler system for leaks, overspray and broken sprinkler heads and repair promptly

Saves up to 500 gallons per month

Use a broom instead of a hose to clean driveways and sidewalks **Saves up to 150 gallons each time**

> Water your plants in the early morning or evening to reduce evaporation and ineffective watering due to wind

Saves up to 25 gallons each time

Additional water saving steps and devices are also available, and some of these are eligible for substantial rebates. Consider replacing your lawn with drought tolerant plants, synthetic turf, or permeable hardscape. Or add rotating sprinkler nozzles, a weather-based controller, or a drip line to enhance your automated irrigation system. And mulch. Hundreds of gallons a year can be saved by simply using organic mulch around plants to reduce evaporation.

Further conservation ideas, and complete rebate information, are available on the web at www.bewaterwise.com. The assessment concluded that the City of El Monte's sources are considered most vulnerable to the following activities or facilities associated with contaminants detected in the water supply: airport maintenance/fueling areas, dry cleaners, metal plating/finishing/fabricating, fleet/truck/bus terminals and gasoline stations.

In addition, the sources are considered most vulnerable to the following activities or facilities not associated with contaminants detected in the water supply: boat services/repair/refinishing and leaking underground storage tanks.

A copy of the complete assessment is available at the City of El Monte Water Department, 3990 Arden Drive, El Monte, California 91731.

You may request a summary of the assessment to be sent to you by contacting Mr. Victor Jimenez at 626-580-2250.

What are Water Quality Standards?

In order to ensure that tap water is safe to drink, USEPA and CDPH prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. CDPH regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Drinking water standards established by USEPA and CDPH set limits for substances that may affect consumer health or aesthetic qualities of drinking water. The chart in this report shows the following types of water quality standards:

- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible.
- Secondary MCLs: Set to protect the odor, taste, and appearance of drinking water.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial pathogens.
- Primary Drinking Water Standard: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements and water treatment requirements.
- Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

How are Contaminants Measured?

Water is sampled and tested throughout the year. Contaminants are measured in:

- parts per million (ppm) or milligrams per liter (mg/L)
- parts per billion (ppb) or micrograms per liter ($\mu g/L)$
- parts per trillion (ppt) or nanograms per liter (ng/L)

What is a Water Quality Goal?

In addition to mandatory water quality standards, USEPA and CDPH have set voluntary water quality goals for some contaminants. Water quality goals are often set at such low levels that they are not achievable in practice and are not directly measurable. Nevertheless, these goals provide useful guideposts and direction for water management practices. The chart in this report includes three types of water quality goals:

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by USEPA.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a disinfectant added for water treatment below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health.
 PHGs are set by the California Environmental Protection Agency.

City of El Monte 2013 Water Quality Table							
Constituent and (Units)				GROUNDWATER SOURCES			
	MCL or [MRDL]	PHG, (MCLG) or [MRDLG]	DLR	Average Results (a)	Range (a) Minimum – Maximum	Most Recent Tests	Typical Origins
Primary Drinking Water Standa	ards — He	alth Related	Standa	rds			·
DISINFECTANT RESIDUAL (b)							
Chlorine Residual (mg/L)	[4]	[4]	NA	0.46	0.22 - 0.81	2013	Drinking water disinfectant
DISINFECTANT BY PRODUCTS (b)							
Total Trihalomethanes (TTHM) (µg/L)	80	NA	1	4.4	ND – 1.2	2013	By product of drinking water disinfection
Haloacetic Acids (HAA) (µg/L)	60	NA	1 – 2	0.25	ND	2013	By product of drinking water disinfection
ORGANIC CHEMICALS (c)							
Tetrachloroethylene (PCE) (µg/L)	5	0.06	0.5	0.89	ND – 3.6	2013	Discharge from industrial activities
Trichloroethylene (TCE) (µg/L)	5	1.7	0.5	0.49	ND - 2.2	2013	Discharge from industrial activities
	5	1.7	0.5	0.75		2015	Discharge from industrial activities
Copper (mg/L) (d)	AL = 1.3	0.3	0.05	0.47	0 of 30 Samples Exceeded AL	2012	Corrosion of household plumbing system
Fluoride (mg/L)	2	1	0.1	0.43	ND – 0.78	2013	Erosion of natural deposits
Lead (µg/L) (d)	AL = 15	0.2	5	ND	1 of 30 Samples Exceeded AL	2012	Corrosion of household plumbing system
Nitrate as NO ₃ (mg/L)	45	45	2	19	5 – 32	2013	Leaching from fertilizer use
RADIOACTIVITY (e)							
Gross Alpha Activity (pCi/L)	15	(0)	3	<3	ND – 6.7	2013	Erosion of natural deposits
Uranium (pCi/L)	20	0.43	1	3.7	1.9 - 6.4	2012	Erosion of natural deposits
Secondary Drinking Water Star						LOTE	
						2012	Enclose of actual description
Turbidity (NTU) Chloride (mg/L)	5 500	NA NA	0.1 NA	0.14	0.1 - 0.39 6.8 - 24	2013 2013	Erosion of natural deposits Erosion of natural deposits
Copper (mg/L)	1	0.3	0.05	<0.05	ND - 0.05	2013	Erosion of natural deposits
Iron (µg/L)	300	NA	100	<100	ND - 0.05	2013	Erosion of natural deposits; industrial was
Sulfate (mg/L)	500	NA	0.5	38	21 – 25	2013	Erosion of natural deposits
Total Dissolved Solids (mg/L)	1,000	NA	NA	302	204 - 426	2013	Erosion of natural deposits
Specific Conductance (µmho/cm)	1,600	NA	NA	529	382 - 665	2013	Substances that form ions in water
Other Constituents of Interest							
Chromium, Hexavalent (µg/L)	NA	0.02	1	2.7	1.3 – 3.7	2013	Erosion of natural deposits; industrial dischard
Hardness as CaCO ₃ (mg/L)	NA	NA	NA	257	174 – 393	2013	Erosion of natural deposits
Sodium (mg/L)	NA	NA	NA	19	11 – 27	2013	Erosion of natural deposits

AL = Action Level; MRDL = Maximum Residual Disinfectant Level; PHG = Public Health Goal; ND = Not Detected at DLR; DLR = Detection Limit for purposes of Reporting; MRDLG = Maximum Residual Disinfectant Level Goal; NA = No Applicable Limit; µg/L = parts per billion or micrograms per liter; < = Detected but average of all samples is below the DLR; pCi/L = picoCuries per liter; µmho/cm = micromhos per centimeter; MCL = Maximum Contaminant Level; MCLG = Maximum Contaminant Level Goal; NTU = Nephelometric Turbidity Units; mg/L = parts per million or milligrams per liter

(a) The results reported in the table are average and range (minimum and maximum) concentrations of the constituents detected in your

drinking water during 2013 or from the most recent tests, except for TTHM, HAA, Lead, Copper and Chlorine Residual which are

(c) All wells and treated water were sampled in 2013.

(d) Lead and Copper samples were collected at 30 residences in September 2012. The 90th percentile concentrations are reported in the table. Copper was detected in 22 samples. No Copper samples exceeded the Action Level and the system was in compliance because the 90th percentile was less than the Action Level. Lead was detected in three samples and one of the samples exceeded the Action Level.

(e) Wells were sampled in 2006, 2010, 2011, 2012 and 2013 for radioactivity according to the monitoring requirements.

For more information or if you have questions about this chart, please contact: Mr. Victor Jimenez, City of El Monte Water Department 3990 Arden Drive, El Monte, California 91731 • Phone: (626) 580-2250

described below. (b) Samples were collected in the distribution system in 2013. The highest running annual averages for Chlorine Residual, TTHM and HAA are reported as "Result." The maximum and minimum of the individual results for chlorine residual, TTHM and HAA are reported as "Range."

Want Additional Information? There's a wealth of information on the internet about Drinking Water Quality and water issues in general. Some good sites – both local and national – to begin your own research are:

City of El Monte Water Department: www.ci.el-monte.ca.us/Government/Water.aspx

California Department of Public Health, Division of Drinking Water and Environmental Management:

www.cdph.ca.gov/programs/Pages/DDWEM.aspx

U.S. Environmental Protection Agency: http://water.epa.gov/drink/ • Water Education Foundation: www.watereducation.org

California Department of Water Resources: www.water.ca.gov • Water Conservation Tips: www.bewaterwise.com

It's official: California is in a drought.

2013 was the driest year on record, and as dry conditions continue, some regions throughout the state are being severely impacted.

On January 17, 2014, Governor Brown declared a drought emergency and asked that all Californians voluntarily reduce their water use by 20%. While there is no immediate danger of water supply interruptions here in Orange County, we must use our water supplies as efficiently as possible because we don't know how long the drought will last.

Southern California is well-prepared and in better shape than many of those in other parts of the state because we made investments for dry periods like this. Over the past 20 years, we have invested more than \$15 billion in water storage and infrastructure improvements that will help sustain us now, and will help ensure reliability in the future. The drought is a serious reminder that we must continue to invest in water infrastructure and reliability projects.

City of El Monte Water Department

3990 Arden Drive El Monte, California 91731 PRESORT STD U.S. Postage **P A I D** Garden Grove, CA Permit No. 1

For more information or questions regarding this report, please contact Mr. Victor Jimenez at 626-580-2250.

Este informe contiene información muy importante sobre su agua potable. Para mas información ó traducción, favor de contactar a Mr. Victor Jimenez. Telefono: 626-580-2250 此份有關你的食水報告, 內有重要資料和訊息,請找 他人為你翻譯及解釋清楚。