

2014 Water Quality Report

East Los Angeles District The City of Commerce Water System

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

Table of Contents

Welcome	From the Manager	
Your Water System	Your Water System	
	Inside the Water Quality Laboratory	
	DWSAPP	
2014 Test Results	Fluoride	
	Water Hardness	
	Possible Contaminants	
	About Lead	
	Key Definitions	
	Water Quality Table	
More Information	Resources	

Welcome

8

At California Water Service (Cal Water), protecting our customers' health and safety is our highest priority. But as your local water provider, we deliver more than just safe drinking water—we deliver quality, service, and value.

Quality. We are dedicated to providing a high-quality water supply to our customers. We have rigorous safeguards in place to make sure that our water meets or surpasses all health standards, and we are pleased to announce that, in 2014, we met every primary and secondary state and federal standard. In California, we test 68,000 water samples per year to ensure we are in compliance with strict state and federal standards.

Service. Beyond providing a clean, reliable water supply whenever you need it, we also work diligently to ensure that supplies are adequate to meet demand, even as we endure the worst drought in California history. To help customers meet new, state-mandated water-use reduction targets, we offer a wide variety of conservation programs and rebates. Our dedicated team of professionals is here to assist you with both routine business and after-hours emergencies.

Value. The costs of providing water and treatment continue to increase, but we are working to ensure that our water stays affordable. We do this in part by investing in infrastructure that is built to last and only replacing equipment when it is nearing the end of its useful life. We also work to find cost-effective solutions for securing, testing, treating, storing, and delivering the water to you. We do all it takes to deliver a clean, reliable water supply right to your home, for less than a penny per gallon in nearly all of our service areas.

This annual water quality report shows any constituents that were detected in your water in 2014, and how your water compares to state and federal water quality standards. This report also provides information about the steps we take to protect your health and safety and answers questions you may have about your water quality.

If you have any questions or concerns, you can contact us by phone or email, through our web site, or in person at your local Customer Center. For important announcements and other water-related news, please visit calwater.com or watch for information in your monthly bill.

Sincerely,

Dan Armendariz, District Manager, East Los Angeles District EAST LOST ANGELES DISTRICT 2000 SOUTH TUBEWAY AVENUE COMMERCE, CA 90040 (323) 722-8601

Your Water System


Cal Water has provided high-quality water utility services to the area served by the City of Commerce water system since 1985. To meet our customers' needs, we use a combination of local groundwater and purchased water from the Metropolitan Water District of Southern California (MWD), which is imported from the Colorado River and the State Water Project in northern California. The City of Commerce water system currently includes three active wells, 12 booster pumps, five storage tanks, and one MWD connection.

In 2014, Cal Water replaced a booster that assists in supplying water to the Commerce System, and replaced existing SCADA server and software package that is used to monitor and operate wells, booster pumps, reservoirs, and all other pertinent functions at the City of Commerce water facilities.

If you have any questions, suggestions, or concerns, please contact our local Customer Center, either by phone or through the contact link at www.calwater.com.

USING WATER WISELY

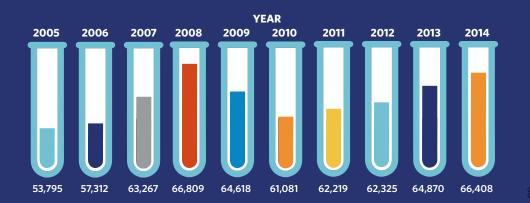
California is in a historic drought, and the State Water Resources Control Board and California Public Utilities Commission have adopted regulations to achieve mandatory water use reductions in each service area in California. For more on the drought and water use restrictions, visit www.calwater.com/drought.

WATER QUALITY LABORATORY

Water professionals collect samples from throughout the water system for testing at our state-of-the-art water quality laboratory, which is certified through the stringent Environmental Laboratory Accreditation Program (ELAP). Scientists, chemists, and microbiologists test the water for more than 140 contaminants with equipment so sensitive it can detect levels as low as one part per trillion. In order to maintain the ELAP certification, all of our scientists must pass blind-study proficiency tests each year for every water quality test performed.

Water quality test results are entered into our Laboratory Information Management System (LIMS), a sophisticated software program that enables us to react quickly to changes in water quality and analyze water quality trends in order to plan effectively for future needs.

DIVISION OF DRINKING WATER

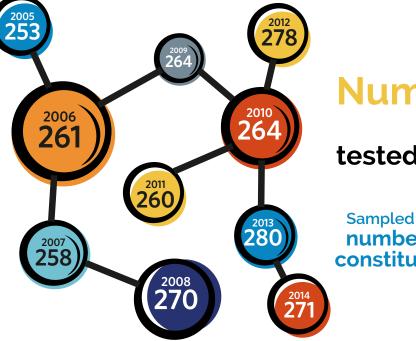

On July 1, 2014, Gov. Jerry Brown transferred the State's Drinking Water Program from the California Department of Public Health to the State Water Resources Control Board's Division of Drinking Water. The transition was created to consolidate all major water quality programs within a single department. According to the Governor's office, this consolidation will allow the State to better manage and protect water resources and ensure safe drinking water for Californians.

Visit www.swrcb.ca.gov/drinking_water/programs for more information about water quality requirements or the Drinking Water Program.

CROSS-CONNECTION CONTROL

To ensure that the high-quality water we deliver is not compromised in the distribution system, Cal Water has a robust cross-connection control program in place. Cross-connection control is critical to ensuring that activities on customers' properties do not affect the public water supply. Our cross-connection control specialists ensure that all of the existing backflow prevention assemblies are tested annually, assess all non-residential connections, and enforce and manage the installation of new commercial and residential assemblies. Last year, our specialists oversaw installation of 2,381 new assemblies and testing of 21,547 backflow prevention assemblies company-wide.

Number of samples Collected



DWSAPP

By the end of 2002, Cal Water had submitted to the California Department of Public Health, now the Division of Drinking Water, a Drinking Water Source Assessment and Protection Program (DWSAPP) report for each water source in the water system. The DWSAPP report identifies possible sources of contamination to aid in prioritizing cleanup and pollution prevention efforts. All reports are available for viewing or copying at our Customer Center.

The water sources in the Commerce system are considered most vulnerable to machine shops, permitted discharges, wastewater, dry cleaners, drinking water treatment plants, existing and historic gas stations, hardware/lumber/parts stores, chemical/petroleum industries, metal plating/fabrication, above- and underground storage tanks, automobile body and repair shops, research laboratories, electrical/electronic manufacturing, transportation terminals, transportation corridors, photo processing, furniture manufacturing, known contaminant plumes, and plastics/synthetics producers.

We encourage customers to join us in our efforts to prevent water pollution and protect our most precious natural resource.

Number of constituents tested annually since 2005

Sampled year number of constituents

FLUORIDE

State law requires Cal Water to add fluoride to drinking water if public funding is available to pay for it, and it is a practice endorsed by the American Medical Association and the American Dental Association to prevent tooth decay.

In this area, local water is blended with purchased water that has fluoride in it. Show the table in this report to your dentist to see if he or she recommends giving your children fluoride supplements.

More information about fluoridation, oral health, and related issues can be found on the State Water Resources Control Board's Division of Drinking Water (DDW) web site at www.waterboards.ca.gov/drinking water/certlic/ drinkingwater/Fluoridation.shtml. For general information on water fluoridation, visit us online at www.calwater.com.

S

Water Hardness

We use water testing equipment SO Sensitive it can detect levels as low as

1 part per trillion.

 \bigcirc

 \bigcirc

 \bigcirc

Water's "hardness" is a measure of the amount of minerals (generally calcium, magnesium, and carbonate) it contains. Water is considered **soft** if its hardness is less than 75 parts per million (ppm), **moderately hard** at 75 to 150 ppm, hard at 150 to 300 ppm, and **very hard** at 300 ppm or higher.

Hard water is generally not a health concern, but it can have an impact on how well soap lathers and is significant for some industrial and manufacturing processes. Hard water may also lead to mineral buildup in pipes or water heaters.

Some people with hard water opt to buy a water softener for aesthetic reasons. However, some water softeners add salt to the water, which can cause problems at wastewater treatment plants. In addition, people on low-sodium diets should be aware that some water softeners increase the sodium content of the water.

 \bigcirc

=

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

[That's equivalent to 1 drop of soap in enough dishwater to fill a string of railroad tank cars 10 miles long!]

 \bigcirc

Ħ

0

 \bigcirc

 \bigcirc

 \bigcirc

8

=

 \bigcirc

Possible Contaminants

All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800) 426-4791.

The sources of drinking water (both tap and bottled) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or human activity.

CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.

Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.

Radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA and the Division of Drinking Water (DDW) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. DDW regulations also establish limits for contaminants in bottled water, which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised people, such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, and those with HIV/AIDS or other immune system disorders; some elderly people; and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791.

About Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water comes primarily from materials and components associated with service lines and home plumbing.

The water delivered by Cal Water to your meter meets all water quality standards for lead, but your home plumbing can affect water quality. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. Be sure to capture the flushed water in a bucket instead of letting it go down your drain to prevent water waste. You can use the water in your garden, to water house plants, or to clean your car or outdoor furniture.

If you are concerned about lead in your water, you may wish to have your water tested by a private lab. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Key Definitions

Maximum Contaminant Level (MCL)

The highest level of a contaminant that is allowed in drinking water. Primary MCLs protect public health and are set as close to the PHGs (or MCLGs) as are economically and technologically feasible. Secondary MCLs relate to the odor, taste, and appearance of drinking water.

Exceeded Standard

Out of compliance with a primary MCL, a secondary MCL, or an action level, as determined by the Division of Drinking Water (DDW). For some compounds, compliance is determined by averaging the results for one source over a year.

Regulatory Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other required action by the water provider.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the United States Environmental Protection Agency (EPA).

Maximum Residual Disinfectant Level (MRDL)

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Notification Level (NL)

A health-based advisory level for an unregulated contaminant in drinking water. It is used by DDW to provide guidance to drinking water systems.

Primary Drinking Water Standard (PDWS)

MCLs and MRDLs for contaminants that affect health, along with their monitoring, reporting, and water treatment requirements.

Public Health Goal (PHG)

The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency's Office of Environmental Health Hazard Assessment without regard to cost or available detection and treatment technologies.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Table Introduction

Cal Water tests your water for more than 140 regulated contaminants and dozens of unregulated contaminants. This table lists only those contaminants that were detected.

In the table, water quality test results are divided into two major sections: "Primary Drinking Water Standards" and "Secondary Drinking Water Standards and Unregulated Compounds." Primary standards protect public health by limiting the levels of certain constituents in drinking water. Secondary standards are set for substances that don't impact health but could affect the water's taste, odor, or appearance. Some unregulated substances (hardness and sodium, for example) are included for your information.

TABLE KEY	
μS/cm	measure of specific conductance
n/a	not applicable
ND	not detected
NTU	nephelometric turbidity unit
pCi/L	picoCuries per liter (measure of radioactivity)
ppm	parts per million (milligrams per liter)
ppb	parts per billion (micrograms per liter)
ppt	parts per trillion (nanograms per liter)
SMCL	secondary maximum contaminant level

2014 Water Quality Table

Primary Drinking W	'ater Stan	dards			Ground	lwater	Purch Surface			
Radiological	Year Tested	Unit	MCL (SMCL)	PHG (MCLG)	Exceeded Standard?	Range	Average	Range	Average	Source of Substance
Gross alpha particle activity	2007–2014	pCi/L	15	(0)	No	ND-3.2	0.5	ND–5	1	Erosion of natural deposits
Gross beta particle activity	2014	pCi/L	50	0	No	n/a		ND–6	3.3	Decay of natural and man-made deposits
Radium 228	2007–2014	pCi/L	5	0.019	No	ND-1 0.4		N	C	Erosion of natural deposits
Uranium	2014	pCi/L	20	0.43	No	N	ND		2.7	Erosion of natural deposits
Inorganic Chemicals	Year Tested	Unit	MCL (SMCL)	PHG (MCLG)	Exceeded Standard?	Range	Average	Range	Average	Source of Substance
Aluminum ¹	2014	ppm	1 (0.2)	0.6	No	N)	ND-0.3	0.1	Erosion of natural deposits; residue from some surface water treatment processes
Arsenic	2014	ppb	10	0.004	No	N	ND		0.7	Erosion of natural deposits; runoff from orchards; glass and electronics production wastes
Barium	2012–2014	ppm	1	2	No	ND		ND-0.1	0.07	Discharges of oil-drilling waste and from metal refineries; erosion of natural deposits
Nitrate (as nitrate)	2014	ppm	45	45	No	ND-14	8	ND-2.7	0.7	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits

¹For aluminum there was a result that was over the SMCL at 0.2 ppm. Even though there was a result at 0.3 ppm, there is not an exceedance since compliance is computed using the average, which was 0.1 ppm. The SMCL for aluminum is 0.2 ppm.

2014 Water Quality Table

(Continued)

Inorganic Chemicals	Year Tested	Unit	MCL (SMCL)	PHG (MCLG)	Exceeded Standard?	Highest Level	Lowest Monthly Percent	Highest Level	Lowest Monthly Percent	Source of Substance
Turbidity (surface water requiring filtration) ²	2014	NTU	TT	n/a	No	n/a	а	0.1	100	Soil runoff
	Year		MCL	PHG	Exceeded	D	istribution ^s	System-Wide	Э	
Inorganic Chemicals	Tested	Unit	(SMCL)	(MCLG)	Standard?	Ran	ge	Aver	age	Source of Substance
Fluoride ³	2014	ppm	2	1	Νο	0.28–	0.28–0.77		37	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
	Year		MCL	PHG	Exceeded	Ground	Groundwater		l Surface ter	
Organic Chemicals	Tested	Unit	(SMCL)	(MCLG)	Standard?	Range	Average	Range	Average	Source of Substance
1,1-Dichloroethylene (11DCE)	2014	ppb	6	10 (7)	No	ND-1.2	0.16	N	D	Discharge from industrial chemical factories
DBP Precursor	Year Tested	Unit	MRDL	MRDLG	Exceeded Standard?	Range	Average	Range	Highest Running Annual Average	Source of Substance
Total organic carbon ⁴	2014	ppm	TT	n/a	No	0.46–0.54	0.5	1.3–2.9	2.3	Various natural and manmade sources

²For surface water systems, the treatment technique dictates that the turbidity level of the filtered water be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1 NTU at any time. Turbidity is a measurement of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system.

³Cal Water does not add fluoride to its groundwater supply. However, low levels of fluoride occur naturally. In November 2007, Metropolitan Water District of Southern California (MWD) began fluoridating their treated surface water, which Cal Water purchases. Since the system receives a blend of groundwater with naturally occurring fluoride and fluoridated surface water, fluoride levels are checked throughout the distribution system every month to verify the actual levels at various locations. The optimal fluoride level for the City of Commerce system is 0.8 ppm with a control range of 0.7–1.3 ppm.

⁴Total Organic Carbon (TOC) has no health effects; however, TOC provides a medium for the formation of disinfection byproducts. These byproducts include trihalomethanes (THMs) and haloacetic acids (HAAs). Drinking water containing these byproducts in excess of the MCL may lead to adverse health effects such as liver, kidney, or nervous system problems, and may lead to an increased risk of cancer. Concerns regarding disinfection byproducts are based upon exposure over many years.

2014 Water Quality Table

(Continued)

Disinfectant and Disinfection Byproducts	Year Tested	Unit	MCL (SMCL)	PHG (MCLG)	Exceeded Standard?	Range	Highest Running Annual Average	Range	Highest Running Annual Average	Source of Substance
Bromate ⁵	2014	ppb	10	(0)	No	n/a		4.4–13	7.8	Byproduct of drinking water chlorination
						Distribution System-Wide			е	
Disinfectant and Disinfection Byproducts	Year Tested	Unit	MCL (SMCL)	PHG (MCLG)	Exceeded Standard?	Rar	ige	Highest Running Annual Average		Source of Substance
Chloramine	2014	ppm	4	4	No	0.1-	-2.4	1.1		Drinking water disinfectant added for treatment
Total haloacetic acids	2014	ppb	60	n/a	No	ND-	-22	4.6		Byproduct of drinking water chlorination
Total trihalomethanes	2014	ppb	80	n/a	No	8.1–	38.6	14.6		Byproduct of drinking water chlorination

Other Regulated Substances

						Distribution System-Wide		
Metals	Year Tested	Unit	AL	PHG (MCLG)	Exceeded Standard?	90 th Percentile	# Sites > AL / Total # Sites Sampled	Source of Substance
Copper	2014	ppm	1.3	0.3	No	0.23	0 of 21	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Purchased

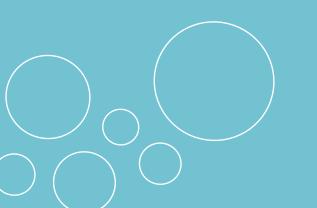
2014 Water Quality Table

(Continued)

Secondary Drinking Water Standards and Unregulated Compounds

and Unregulated	Compound	ls			Groundwater Surface Water					
Inorganic Chemicals	Year Tested	Unit	SMCL	PHG (MCLG)	Exceeded Standard?	Range	Average	Range	Average	Source of Substance
Boron	2012–2014	ppm	NL=1	n/a	No	0.19–0.21	0.2	0.14–0.16	0.15	Erosion of natural deposits
Calcium	2012–2014	ppm	n/a	n/a	No	58–60	59	22–61	47	Erosion of natural deposits
Chloride	2012–2014	ppm	500	n/a	No	59–60	60	75–91	83	Erosion of natural deposits; seawater influence
Color	2012–2014	Units	15	n/a	No	N)	1–2	1	Naturally occurring organic matter
Hardness	2012–2014	ppm	n/a	n/a	No	19	0	110–250	200	Erosion of natural deposits
Magnesium	2012–2014	ppm	n/a	n/a	No	10–11	10	11–21	17	Erosion of natural deposits
Odor	2012–2014	Units	3	n/a	No	N)	3–6	3	Naturally occurring organic matter
рН	2014	Units	n/a	n/a	No	6.8–9.1	7.6	8.1–8.4	8.2	Inherent characteristic of water
Sodium	2012–2014	ppm	n/a	n/a	No	54–57	56	57–85	75	Erosion of natural deposits; seawater influence
Specific conductance	2012–2014	µS/cm	1600	n/a	No	640–660	650	520–900	763	Erosion of natural deposits; seawater influence
Sulfate	2012–2014	ppm	500	n/a	No	90–91	91	44–200	139	Runoff/leaching from natural deposits; industrial wastes
Total dissolved solids	2012–2014	ppm	1000	n/a	No	360–380	370	280–560	453	Runoff/leaching from natural deposits

2014 Water Quality Table


(Continued)

						Purchased Si		urface Wate	r		
Disinfection Byproducts	Year Tested	Unit	MCL (SMCL)	PHG (MCLG)	Exceeded Standard?	Range		Highest Annual Average		Source of Substance	
Chlorate	2014	ppb	NL=800	n/a	No	21–105		21–105 82		2	Byproduct of drinking water chlorination
n-Nitrosodimethylamine	2014	ppt	NL=10	3	No	ND–5		2		Byproduct of drinking water chlorination; industrial processes	
	Year			PHG	Exceeded	Groundwater		Groundwater Water			
Organic Chemicals	Tested	Unit	SMCL	(MCLG)	Standard?	Range	Average	Range	Average	Source of Substance	
1,4-dioxane ⁶	2014	ppb	NL=1	n/a	No	ND-1	0.1	n/a		Industrial solvent or solvent stabilizer for chlorinated solvents or volatile organic compounds	

⁶Some groundwater wells contain 1,4-dioxane at levels greater than the notification level (NL) established by the State Water Resources Control Board, Division of Drinking Water (DDW). An NL is defined as a health-based advisory level for an unregulated contaminant in drinking water. DDW uses it to provide guidance to drinking water systems. DDW reccomends taking a well out of service if the concentrations in the well exceed 35 times the NL.

thank you.

Thanks for taking the time to learn more about your water quality! Even more information awaits you at www.calwater.com. Visit our web site to get information about your account, water use history, water rates, and water system.

Drought news

Lead in water

18

Solution Water treatment and disinfection

Protecting the water supply