Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR) (to certify electronic delivery of the CCR, use the certification form on the State Board's website at <u>http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml</u>)

Water System Name: LEISURE LAKE MOBILE ESTATES Water System Number: 1910066

The water system above hereby certifies that its Consumer Confidence Report was distributed on

(date) to customers (and appropriate notices of availability have been given). Further, the system certifies that the information contained in the report is correct and consistent with the compliance monitoring data previously submitted to the State Water Resources Control Board, Division of Drinking Water.

Certified By:	Name				
	Signature				
	Title				
	Phone Number	()	Date	

To summarize report delivery used and good-faith efforts taken, please complete the form below by checking all items that apply and fill-in where appropriate:

CCR was distributed by mail or other direct delivery methods. Specify other direct delivery methods used:

netł	nods:
	Posted the CCR on the internet at http://
	Mailed the CCR to postal patrons within the service area (attach zip codes used)
	Advertised the availability of the CCR in news media (attach a copy of press release)
	Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of the newspaper and date published)
	Posted the CCR in public places (attach a list of locations)
	Delivery of multiple copies of CCR to single bill addresses serving several persons, such as apartments, businesses, and schools
	Delivery to community organizations (attach a list of organizations)
	_ Other (attach a list of other methods used)
ors	systems serving at least 100,000 persons: Posted CCR on a publicly-accessible internet site

2014 Consumer Confidence Report

Water System Name: LEISURE LAKE MOBILE ESTATES

Report Date:

June 2015

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2014.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to CDPH records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 1 source(s): Well 01

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings currently are not held.

For more information about this report, or any questions relating to your drinking water, please call and ask for Jerry De Lucia.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level

(MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS):** MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system mush follow.

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants,* such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants,* such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants,* that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4 and 5 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Table 1	l - SAMPLIN	G RESULTS SHO	WING THE DET	EC]	TION	OF LEAD AND COPPER
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant
Copper (ppm)	5 (2013)	0.15	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	Table 2	- SAMPLING	G RESULTS FO	DR SO	DIUM ANI	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS											
Chemical or Constituent (and reporting units)	nt ag units) Sample Date Level Detected Detections MCL (MCLG)		Typical Sources of Contaminant														
Sodium (ppm)	(2014)	69	N/A	none	none	Salt present in the water and is generally naturally occurring											
Hardness (ppm)	(2014)	253	N/A	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring											

Table 3 - 1	DETECTION	OF CONTA	AMINANTS V	NITH A P	RIMARY DI	RINKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	ected Detections [MRDL] (MCLG) Typical Sources of [MRDLG]		Typical Sources of Contaminant	
Arsenic (ppb)	(2014)	7	6 - 8	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Barium (ppm)	(2014)	0.1	N/A	1	2	Discharge from oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (ppm)	(2014)	0.3	N/A	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.

Hexavalent Chromium (ppb)	(2014)	4	N/A	10	0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Nitrate (ppm)	(2014)	4.5	N/A	45	45	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (ppm)	(2014)	1	N/A	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Gross Alpha (pCi/L)	(2014)	5.85	N/A	15	(0)	Erosion of natural deposits.
Uranium (pCi/L)	(2014)	5.35	N/A	20	0.43	Erosion of natural deposits

Table 4 - DETEC	CTION OF CO	NTAMINAN	TS WITH A <u>SE</u>	CON	DARY DRIN	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (ppm)	(2014)	153	N/A	500	n/a	Runoff/leaching from natural deposits; seawater influence
Specific Conductance (umhos/cm)	(2014)	849	N/A	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (ppm)	(2014)	57	N/A	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	(2014)	550	N/A	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2014)	0.3	0.2 - 0.3	5	n/a	Soil runoff

	Tab	le 5 - DETE	CTION OF UN	NREGULATED	CONTAMINANTS
Chemical or Constituent (and reporting units)	stituent Sample Date Detected Detections Level		Notification Level	Typical Sources of Contaminant	
Boron (ppm)	(2014)	0.3	N/A	1	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.
Vanadium (ppm)	(2014)	0.009	N/A	0.05	The babies of some pregnant women who drink water containing vanadium in excess of the action level may have an increased risk of developmental effects, based on studies in laboratory animals.

Table 6 - DETECTION OF FEDERAL DISINFECTANT/DISINFECTANT BYPRODUCT RULE									
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL (MRDL)		Typical Sources of Contaminant			
Total Trihalomethanes (TTHMs) (ppb)	(2014)	0.7	0.6 - 0.8	80		By-product of drinking water disinfection			

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Leisure Lake Mobile Home Park* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

2014 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01 of the LEISURE LAKE MOBILE HOME PARK water system in July, 2001.

 Well 01 - is considered most vulnerable to the following activities not associated with any detected contaminants: Transportation corridors - Freeways/state highways
Wells - Water supply
Recreational area - surface water source

Acquiring Information

A copy of the complete assessment may be viewed at: Department of Public Health Drinking Water Field Operations Branch 500 North Central Avenue, Suite 500 Glendale, CA 91203

You may request a summary of the assessment be sent to you by contacting: Shu-Fang Orr, P.E., Angeles District Engineer (818) 551 -2045 (818) 551-2054 (fax) Shu-Fang.Orr@cdph.ca.gov

Leisure Lake Mobile Home Park Analytical Results By FGL - 2014

	LEAD AND COPPER RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper		ppm		1.3	.3			0.153	5		
Space 001	SP 1308330-1	ppm				2013-08-13	ND				
Space 015	SP 1308330-2	ppm				2013-08-13	ND				
Space 076	SP 1308330-3	ppm				2013-08-13	0.182				
Space 123	SP 1308330-4	ppm				2013-08-13	ND				
Space 204	SP 1308330-5	ppm				2013-08-13	0.124				

SAMPLING RESULTS FOR SODIUM AND HARDNESS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Sodium		ppm		none	none			69	69 - 69	
Well 01	SP 1403182-1	ppm				2014-03-19	69			
Hardness		ppm		none	none			253	253 - 253	
Well 01	SP 1403182-1	ppm				2014-03-19	253			

	PRIMA	RY DRIN	KING WA	TER STAN	DARDS ((PDWS)			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Arsenic		ppb		10	0.004			7	6 - 8
Well 01	SP 1414725-1	ppb				2014-12-17	7		
Well 01	SP 1413561-1	ppb				2014-11-19	6		
Well 01	SP 1412017-1	ppb				2014-10-15	7		
Well 01	SP 1410731-1	ppb				2014-09-17	7		
Well 01	SP 1409517-1	ppb				2014-08-20	7		
Well 01	SP 1408036-1	ppb				2014-07-16	7		
Well 01	SP 1407011-1	ppb				2014-06-18	7		
Well 01	SP 1405823-1	ppb				2014-05-21	7		
Well 01	SP 1404346-1	ppb				2014-04-16	7		
Well 01	SP 1403179-1	ppb				2014-03-19	7		
Well 01	SP 1403182-1	ppb				2014-03-19	8		
Well 01	SP 1401958-1	ppb				2014-02-19	7		
Well 01	SP 1400763-1	ppb				2014-01-22	7		
Barium		ppm	2	1	2			0.1	0.1 - 0.1
Well 01	SP 1403182-1	ppm				2014-03-19	0.1		
Fluoride		ppm		2	1			0.3	0.3 - 0.3
Well 01	SP 1403182-1	ppm				2014-03-19	0.3		
Hexavalent Chromium	•	ppb		10	0.02			4.0	4.0 - 4.0
Well 01	SP 1414724-1	ppb				2014-12-17	4.0		
Nitrate		ppm		45	45			4.5	4.5 - 4.5
Well 01	SP 1403182-1	ppm				2014-03-19	4.5		
Nitrate + Nitrite as N		ppm		10	10			1.0	1.0 - 1.0
Well 01	SP 1403182-1	ppm				2014-03-19	1.0		
Gross Alpha	•	pCi/L		15	(0)			5.85	5.85 - 5.85
Well 01	SP 0603820-1	pCi/L				2014-03-19	5.85		
Uranium		pCi/L		20	0.43			5.35	5.35 - 5.35
Well 01	SP 0603820-1	pCi/L				2014-03-19	5.35		

SECONDARY DRINKING WATER STANDARDS (SDWS)										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Chloride		ppm		500	n/a			153	153 - 153	
Well 01	SP 1403182-1	ppm				2014-03-19	153			
Specific Conductance		umhos/cm		1600	n/a			849	849 - 849	

Well 01	SP 1403182-1	umhos/cm			2014-03-19	849		
Sulfate		ppm	500	n/a			57	57 - 57
Well 01	SP 1403182-1	ppm			2014-03-19	57		
Total Dissolved Solids		ppm	1000	n/a			550	550 - 550
Well 01	SP 1403182-1	ppm			2014-03-19	550		
Turbidity		NTU	5	n/a			0.3	0.2 - 0.3
Well 01	SP 1414726-1	NTU			2014-12-17	0.3		
Well 01	SP 1410730-1	NTU			2014-09-17	0.3		
Well 01	SP 1407012-1	NTU			2014-06-18	0.2		
Well 01	SP 1403182-1	NTU			2014-03-19	0.2		

UNREGULATED CONTAMINANTS										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Boron		ppm		NS	n/a			0.3	0.3 - 0.3	
Well 01	SP 1403182-1	ppm				2014-03-19	0.3			
Vanadium		ppm		NS	n/a			0.009	0.009 - 0.009	
Well 01	SP 1403182-1	ppm				2014-03-19	0.009			

DETECTION OF FEDERAL DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)	
Total Trihalomethanes (TTHMs)		ppb		80	n/a			0.7	0.6 - 0.8	
173 - STG2 DBP	SP 1409516-2	ppb				2014-08-20	0.6			
Club House - STG2 DBP	SP 1409516-1	ppb				2014-08-20	0.8			

Leisure Lake Mobile Home Park CCR Login Linkage - 2014

FGL Code	Lab ID	Date_Sampled	Method	Description	Property
STG2 DBP 173	SP 1409516-2	2014-08-20	EPA 551.1	173 - STG2 DBP	Stage 2 DBPR Monitoring
STG2 DBP Clubhs	SP 1409516-1	2014-08-20	EPA 551.1	Club House - STG2 DBP	Stage 2 DBPR Monitoring
Space 1	SP 1308330-1	2013-08-13	Metals, Total	Space 001	Lead & Copper Monitoring
Space 15	SP 1308330-2	2013-08-13	Metals, Total	Space 015	Lead & Copper Monitoring
Space 76	SP 1308330-3	2013-08-13	Metals, Total	Space 076	Lead & Copper Monitoring
Space 123	SP 1308330-4	2013-08-13	Metals, Total	Space 123	Lead & Copper Monitoring
Space 204	SP 1308330-5	2013-08-13	Metals, Total	Space 204	Lead & Copper Monitoring
WELL 01	SP 1400763-1	2014-01-22	Metals, Total	Well 01	Arsenic Monitoring
	SP 1401958-1	2014-02-19	Metals, Total	Well 01	Arsenic Monitoring
	SP 1403182-1	2014-03-19	Metals, Total	Well 01	Well 01 - Water Quality
	SP 1403182-1	2014-03-19	General Mineral	Well 01	Well 01 - Water Quality
	SP 1403182-1	2014-03-19	Asbestos	Well 01	Well 01 - Water Quality
	SP 1403182-1	2014-03-19	Wet Chemistry	Well 01	Well 01 - Water Quality
	SP 1403179-1	2014-03-19	Metals, Total	Well 01	Arsenic Monitoring
	SP 1404346-1	2014-04-16	Metals, Total	Well 01	Arsenic Monitoring
	SP 1405823-1	2014-05-21	Metals, Total	Well 01	Arsenic Monitoring
	SP 1407012-1	2014-06-18	Wet Chemistry	Well 01	Well 01 - Water Quality
	SP 1407011-1	2014-06-18	Metals, Total	Well 01	Arsenic Monitoring
	SP 1408036-1	2014-07-16	Metals, Total	Well 01	Arsenic Monitoring
	SP 1409517-1	2014-08-20	Metals, Total	Well 01	Arsenic Monitoring
	SP 1410730-1	2014-09-17	Wet Chemistry	Well 01	Well 01 - Water Quality
	SP 1410731-1	2014-09-17	Metals, Total	Well 01	Arsenic Monitoring
	SP 1412017-1	2014-10-15	Metals, Total	Well 01	Arsenic Monitoring
	SP 1413561-1	2014-11-19	Metals, Total	Well 01	Arsenic Monitoring
	SP 1414724-1	2014-12-17	Wet Chemistry	Well 01	Chrome 6 Monitoring
	SP 1414726-1	2014-12-17	Wet Chemistry	Well 01	Well 01 - Water Quality
	SP 1414725-1	2014-12-17	Metals, Total	Well 01	Arsenic Monitoring