Consumer Confidence Report

Water System Name:	Munz and Mendenhall	Report Date:	7/27/16
We test the drinking water quality the results of our monitoring for th		•	•
Este informe contiene informaci entienda bien.	ón muy importante sobre su a	gua potable. Tradúzca	lo ó hable con alguien que lo
Type of water source(s) in use:	Groundwater		
Name & general location of source At 42230 Lake Hughes Rd, Lake Hughes		Hughes Rd, Lake Hughes, CA	A 93532. Well 02 Located
Drinking Water Source Assessment in Mendenhall water system in April, 2002. Contaminants: Lagoons/ liquid wastes. C Time, no chemicals have been detected th Mountain & Rural Sanitation Program, W Request a summary of the assessment be A source water assessment was conducted Considered vulnerable to any potentially Vulnerable to the chemicals: None. At t Complete assessment may be viewed at Monterey Park, CA 91754. You may requested the program of the same progra	The source is considered most vulneral Camps Munz & Mendenhall Well 01 has not will affect the quality of the drinking Vater Sewerage & Subdivision 2525 Corsent to you by contacting Jose Reynoso of for the Well 02 of the Camps Munz & vacontaminating activities at this time. Chis time, no chemicals have been detect Mountain & Rural Sanitation Program, uest a summary of the assessment be sen 4327.	shown to be at most vulnerable water. A copy of the complete porate Place, Room 150 Monte Chief Environmental Health S Mendenhall water system in A amps Munz & Mendenhall Weed that will affect the quality of Water Sewerage & Subdivision to you by contacting Jose Research	le to the chemicals: None. At this e assessment may be viewed at: erey Park, CA 91754. You may pecialist at 323-881-4158. April, 2002. The source is not ell 02 has shown to be at most of the drinking water. A copy of the may 2525 Corporate Place, Room 150
For more information, contact:			

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: Department permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial
 processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural
 application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (Department) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The Department allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

TABLE 1 –	SAMPLING	F RESULT	S SHOWI	NG THE DI	ETECTION	OF COLI	FORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	- 100 0	nonths in ation	МС	CL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	(In a mo.) <u>0</u>		0	More than 1 month with a		0	Naturally present in the environment
Fecal Coliform or E. coli	(In the year)		0	A routine sar repeat sampl total coliform sample also coliform or <i>I</i>	e detect n and either detects fecal	0	Human and animal fecal waste
TABLE 2	- SAMPLIN	IG RESUL	TS SHOW	ING THE	DETECTION	ON OF LEA	AD AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	9/30/2015	10	.021	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	9/30/2015	10	1.1	0	1.0	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

	TABLE 3	– SAMPLING I	RESULTS FOR S	SODIUM A	AND HARDI	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Sodium (ppm)						Salt present in the water and is
	8/19/13	29	n/a	none	none	generally naturally occurring
Hardness (ppm)	8/19/13	14,500	n/a	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring

*Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 4 – DET	ECTION O	F CONTAMIN	ANTS WITH A 1	PRIMARY	DRINKING	WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Turbidity (NTU)	8/19/13	0.41	n/a	5	n/a	Soil runoff
•		Ra	dioactive Contami	nants		
Gross Alpha particle activity (pCi/L)	8/19/13	6.64	n/a	15	0	Erosion of natural deposits
Combined Radium-226 and Radium-228 (pCi/L)	8/19/13	0.585	n/a	5	0	Erosion of natural deposits
Gross Beta particle activity (pCi/L)	8/19/13	5.8	n/a	50	0	Erosion of natural deposits
		Iı	norganic contamin	ants		
Aluminum (ppm)	8/19/13	0.0091	n/a	1	0.6	Erosion of natural deposits; residue from some surface water treatment processes.
Barium (ppm)	8/19/13	0.031	n/a	1	2	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (ppm)	8/19/13	0.93	n/a	2.0	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Nickel (ppm)	8/19/13	1.7	n/a	100	12	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and cropland
Nitrate as N (ppm)	10/22/14	2.06	<2.05-2.06	45	45	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits

${\bf TABLE~4-DETECTION~OF~CONTAMINANTS~WITH~A~\underline{SECONDARY}~DRINKING~WATER~STANDARD}$

Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Aluminum (ppb)	8/19/13	9.1	n/a	200	n/a	Erosion of natural deposits; residue from some surface water treatment processes
Copper (ppm)	8/19/13	0.3995	n/a	1	n/a	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Iron (ppb)	8/19/13	190	n/a	300	n/a	Leaching from natural deposits; industrial wastes

Manganese (ppb)	8/19/13	28	n/a	50	n/a	Leaching from natural deposits
Turbidity (Units)	8/19/13	0.41	n/a	5	n/a	Soil runoff
Zinc (ppm)	8/19/13	0.32	n/a	5	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	8/19/13	380	n/a	1,000	n/a	Runoff/ leaching from natural deposits
Specific Conductance (µS/cm)	8/19/13	640	n/a	1,600	n/a	Substances that form ions when in water; seawater influence
Chloride (ppm)	8/19/13	15	n/a	500	n/a	Runoff/leaching from natural deposits; seawater influence
Sulfate (ppm)	8/19/13	74	n/a	500	n/a	Runoff/leaching from natural deposits; industrial wastes

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Los Angeles County ISD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT

For Water Systems Providing Ground Water as a Source of Drinking Water

FECAL	TABLE 7 INDICATOR-I	/ – SAMPLING POSITIVE GRO			
Microbiological Contaminants (complete if fecal-indicator detected)	Total No. of Detections	Sample Dates	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
E. coli	(In the year)		0	(0)	Human and animal fecal waste
Enterococci	(In the year)		TT	n/a	Human and animal fecal waste
Coliphage	(In the year)		TT	n/a	Human and animal fecal waste

Summary Information for Fecal Indicator-Positive Ground Water Source Samples, Uncorrected Significant Deficiencies, or Ground Water TT

SPECIAL	NOTICE OF FECAL IN	DICATOR-POSITIVE (GROUND WATER SOURCE	SAMPLE
n/a				
	SPECIAL NOTICE FOR	UNCORRECTED SIG	NIFICANT DEFICIENCIES	
n/a				
	VIOLA	ATION OF GROUND W	ATER TT	
TT Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language
n/a				

For Systems Providing Surface Water as a Source of Drinking Water

TABLE 8 - SAMPLING RESULTS SHOW	ING TREATMENT OF SURFACE WATER SOURCES
Treatment Technique ^(a) (Type of approved filtration technology used)	
Turbidity Performance Standards ^(b) (that must be met through the water treatment process)	Turbidity of the filtered water must: 1 – Be less than or equal to NTU in 95% of measurements in a month. 2 – Not exceed NTU for more than eight consecutive hours. 3 – Not exceed NTU at any time.
Lowest monthly percentage of samples that met Turbidity Performance Standard No. 1.	
Highest single turbidity measurement during the year	
Number of violations of any surface water treatment requirements	

- (a) A required process intended to reduce the level of a contaminant in drinking water.
- (b) Turbidity (measured in NTU) is a measurement of the cloudiness of water and is a good indicator of water quality and filtration performance. Turbidity results which meet performance standards are considered to be in compliance with filtration requirements.
- * Any violation of a TT is marked with an asterisk. Additional information regarding the violation is provided below.

Summary Information for Violation of a Surface Water TT

			Actions Taken to Correct	Health Effect
TT Violation	Explanation	Duration	the Violation	Language
~				
Sumn	nary Information fo	r Operating Und	ler a Variance or Exemp	tion
Sumn	nary Information fo	r Operating Und	er a Variance or Exemp	tion
Sumn	nary Information fo	r Operating Und	er a Variance or Exemp	tion
Sumn	nary Information fo	r Operating Und	er a Variance or Exemp	tion
Sumn	nary Information fo	r Operating Und	er a Variance or Exemp	tion