

Azusa Springs Water Distribution System System No. 1909644

SYSTEM DESCRIPTION

The Azusa Springs Water Distribution System is designed to supply potable water to "San Gabriel & Lower Los Angeles Rivers & Mountains Conservancy and its Joint Powers Authorities." The JPA would include the Watershed Conservation Authority, Los Cerritos Wetlands Authority, and the San Gabriel River Discovery Center Authority.

Divided by the San Gabriel River, the Azusa Springs Water Distribution System is supplied by a ground water well, which is considered under the influence of surface water. This well is equipped with a 2HP Franklin motor and an 11 stage Grundfos submersible pump. The well has approximately 40 feet of 1 ¹/a" column, and is capable of producing 20 GPM (Gallons Per Minute). The operation of this well is by a mechanical time clock, which presently operates the well twice a day, 2 to 4 hours each time. Well operation is controlled by Scada System Controls. Tank level settings are set to start and stop as well as low and high alarm. Remote Radio Read.

The well is equipped with a Stenner sodium hypo chlorinator chemical injection system, designed to chlorinate and maintain a residual throughout the water system. The well discharge is the first point of chlorination provided for system disinfection. The water flow then continues up the hill to a duel stage filtration system. The filter system consists of two pressurized permanent media sand filters. A majority of the suspended particles are removed in the primary filter, and then the secondary filter polishes the water as it proceeds to storage.

The Azusa Springs Water System has a total of 2 storage tanks in use. Each tank has a storage capacity of approximately 9,000 gallons. From the storage facility this system is then gravity fed through 2 separate distribution mains. There is a 6- inch water main, which feeds a fire hydrant. Also there is a 2-inch water main, which feeds the balance of the distribution system.

2015 Consumer Confidence Report

This report is designed to inform you about the quality of water and services we deliver every day. Our commitment is to provide our customers with a safe and dependable supply of drinking water. Your water not only meets, but also surpasses both State and Federal standards for quality and safety. To maintain this high quality, State Water Resources Control Board, Division of Drinking Water certified plant operators are operating Azusa Springs Water System on a regular basis, treating and monitoring the quality of the drinking water we serve.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board, Division of Drinking Water prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. California Department of Public Health regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Este informe contiene informacion muy importante sobre su agua de beber. Traduzcalo o hable con alguien que lo entienda bien.

2015 WATER QUALITY TABLEPRIMARY STANDARDS—Mandatory, Health-Related Standards Established by the State of California Department of Public Health

PARAMETER	UNIT	STATE	AZUSA			
		MAXIMUM CONTAMINANT	GROUNDWATER		MAJOR SOURCES IN DRINKING WATER	
FILTRATION PERFORMANCE		LEVEL (MRDL)	RANGE	AVERAGE		
& MICROBIOLOGICAL						
Turbidity (a)	Units	0.10 (a)	N/A	N/A	Soil Runoff	
Cryptosporidium	Oocysts/L	TT	N/A		Naturally present in the environment >99% of crypto is removed during treatment	
MICROBIOLOGICAL Coliform Bacteria P/A (b)	% Positive	5%	0%	0%	Naturally present in the environment Human and Animal waste	
DISINFECTION, DISINFECTION BY PRODUCTS						
Chlorine Residual	mg/L	(4)	0.50-1.25	0.80	Drinking water disinfectant added for treatment	
ORGANIC CONTAMINANTS						
Tetrachloroethylene (PCE)	μg/L	5	ND-0.99	ND	Discharge from factories and dry cleaners	
INORGANIC CONTAMINANTS						
Arsenic	μg/L	10	2.28-2.88	2.63	Erosion of natural deposits	
Barium	μg/L	1000	ND-115	12.78	Erosion of natural deposits	
Fluoride	mg/L	2	0.25-0.40	0.30	Erosion of natural deposits	
Nitrate (as NO3)	mg/L	45	ND-54.0	6.3 (b)	Leaching from fertilizer use	
Perchlorate	μg/L	6	ND-7.8	ND (d)	Abnormal production of Thyroid Hormones	
RADIOACTIVE CONTAMINANTS						
Gross Alpha Activity	pCi/L	15	ND-3.3	ND	Erosion of natural deposits	
UNREGULATED CONTAMINANTS					Suspected Health Effects	
Boron	μg/L	NL-1000	ND-200	67.0	Reproductive effects on some men	
Vanadium	μg/L	NL-50	ND-9.5	0.79	Child development effects	

CONTAMINANTS WITH SECONDARY STANDARDS—Aesthetic Standards Established by the State of California Department of Public Health

PARAMETER	UNIT	STATE	AZUSA	
		MAXIMUM CONTAMINANT LEVEL (MRDL)	GROUND RANGE	WATER AVERAGE
Turbidity	Units	5	0.05-0.40	0.10
Color	Units	15	ND	ND
Odor Threshold	Units	3	1.0-1.0	1.0
Chloride	mg/L	500	17.0-65.0	47.6
Sulfate	mg/L	500	20.0-59.0	30.4
Total Dissolved Solids	mg/L	1000	200-440	260
Specific Conductance	pmho/Cm	1600	350-700	456
ADDITIONAL CONSTITUENTS AN				
pН	Units	No Standard	7.30-8.10	7.80
Hardness (CaCo3)	mg/L			116
Sodium	mg/L	No Standard	26-53	25.0
Calcium	mg/L	No Standard	29-81	42.3
Potassium	mg/L	No Standard	3.0-4.8	3.6
Magnesium	mg/L	No Standard	9.1-20.0	10.4

When you read about water quality, you might ask yourself:

How much is one part per billion (1ppb)?

Answer: 1ppb equal to 1 drop of water in 14,000 gallons, 1 second in 32 years, 1 inch in 16,000 miles or 1 cent in \$10 million.

How much is one part per million (1ppm)?

Answer: 1ppm is equal to 1 drop of water in 14 gallons, 1 second in 12 days, 1 inch in 16 miles or 1 cent in \$10,000.