When our wells are operating, the pumped groundwater contains nitrate at levels that exceed one-half the maximum contaminant level (MCL). The wells only operate when the nitrate is less than the MCL. Frequent testing of the well water is required by the DDW to verify that the water served to our customers never exceeds the MCL. The source of the elevated nitrate could be septic tanks or nitrogen fertilizers. Nitrate in drinking water at levels above the MCL of 45 milligrams-per-liter is a health risk for infants of less than six months of age. High nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen resulting in a serious illness; symptoms include shortness of breath and blueness of the skin. High nitrate levels may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant or you are pregnant, you should ask advice from your health care provider, or choose to use bottled water for mixing formula and juice for your baby.

Arsenic is an element that occurs in the earth's crust. Accordingly, there are natural sources of exposure. While your drinking water meets the current standard for arsenic, it does contain low levels of arsenic. The drinking water standard balances the current understanding of arsenic's possible health effects against the cost of removing arsenic from drinking water. The DDW continues to research the health effects of low levels of arsenic, which is known to cause cancer at high concentrations and is linked to other health effects such as skin damage and circulatory problems. The USEPA established a maximum contaminant level for arsenic of 50 parts per billion in 1975. In January 2002, USEPA finalized a new standard for arsenic in drinking water that requires public water suppliers to reduce arsenic to 10 parts per billion. Groundwater and imported water supplies in the La Cañada Irrigation District service area generally range between non-detectable levels and 6 parts per billion.

Definitions of terms used in the water quality charts:

- Public Health Goal (PHG) is the level of a contaminant in drinking water below which there is no known or suspected risk to health. PHGs are set by the California Environmental Protection Agency.
- Maximum Contaminant Level Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or suspected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.
- Maximum Contaminant Level (MCL) is the highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Primary drinking water standards are MCLs for contaminants that effect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.
- **Regulatory Action Level** (AL) is the concentration of a contaminant which, when exceeded, triggers treatment or other requirements that a water system must follow.
- Maximum Residual Disinfectant Level (MRDL) is the level of disinfectant that can be added for water treatment that may not be exceeded without an unacceptable possibility of adverse health effects.
- Maximum Residual Disinfectant Level Goal (MRDLG) is the level of a disinfectant in drinking water below which there is no known or suspected risk to health. MRDLGs are set by the U.S. Environmental Protection Agency.
- Treatment Techniques (TT) Filtration is called a "treatment technique". A treatment technique is a required process intended to reduce the level of contaminants in drinking water that are difficult and sometimes impossible to measure directly.

Chemical	MCL	PHG (MCLG)	Average Amount	Range of Detections	MCL Violation?	Most Recent Sampling Date	Typical Source of Contaminant
Radiologicals							
Alpha Radiation (pCi/L)	15	n/a	10	6.4 - 14	No	2015	Erosion of Natural Deposits
Radium (pCi/L)	5	n/a	0.05	0.01 - 0.1	No	2015	Erosion of Natural Deposits
Uranium (pCi/L)	20	0.5	6.7	5.4 - 7.9	No	2015	Erosion of Natural Deposits
Inorganic Chemicals					-	•	
Barium (ppb)	1000	2000	70	ND - 110	No	2015	Erosion of Natural Deposits
Nitrate (ppm as NO3)	45	45	41	32 - 54	No	2015	Fertilizers, Septic Tanks
Nitrate+Nitrite (ppm as N)	10	10	7.4	ND - 12	No	2015	Fertilizers, Septic Tanks
Arsenic (ppb)	10	0.004	1.9	ND - 5.9	No	2015	Erosion of Natural Deposits
Perchlorate (ppb)	6	6	ND	ND	n/a	2015	Erosion of Natural Deposits
Iron (ppb)	300	300	153.0	ND - 340	n/a	2015	Erosion of Natural Deposits
Fluoride (ppm)	2	1	0.3	0.25 - 0.33	No	2015	Erosion of Natural Deposits
Organic Chemicals	•			•			
Tetrachloroethylene PCE (ppb)	5	.4	0.4	ND - 1.2	No	2015	Industrial Solvent Discharge
Trichloroethylene TCE (ppb)	5	0.06	1.1	0.8 - 2.0	No	2015	Industrial Solvent Discharge
Secondary Standards [*]	•						
Chloride (ppm)	500*	n/a	47.9	5.7 - 76	No	2015	Erosion of Natural Deposits
Odor (threshold odor number)	3*	n/a	1	1	No	2015	Erosion of Natural Deposits
Specific Conductance (umho/cm)	1600*	n/a	697	420 - 910	No	2015	Erosion of Natural Deposits
Sulfate (ppm)	500*	n/a	82	52 - 110	No	2015	Erosion of Natural Deposits
Surfactants (MBAS) (ppb)	500*	n/a	0.1	ND - 0.23	No	2015	Found in Detergents
Total Dissolved Solids (ppm)	1000*	n/a	480	300 - 590	No	2015	Erosion of Natural Deposits
Turbidity (ntu)	5*	n/a	1.3	0.1 - 3.7	No	2015	Erosion of Natural Deposits
Unregulated Contaminants	s Requiring M	onitoring		•			• · · · · · · · · · · · · · · · · · · ·
Alkalinity (ppm as CaCO3)	Not Regulated	n/a	190	190 - 200	n/a	2015	Erosion of Natural Deposits
Calcium (ppm)	Not Regulated	n/a	76	49 - 90	n/a	2015	Erosion of Natural Deposits
Chromium (VI) (ppb)	Not Regulated	n/a	0.33	ND - 1.0	n/a	2015	Erosion of Natural Deposits
Hardness (ppm)	Not Regulated	n/a	327	280 - 350	n/a	2015	Erosion of Natural Deposits
Magnesium (ppm)	Not Regulated	n/a	26	17 - 30	n/a	2015	Erosion of Natural Deposits
Potassium (ppm)	Not Regulated	n/a	2.6	2.1 - 2.9	n/a	2015	Erosion of Natural Deposits
Sodium (ppm)	Not Regulated	n/a	31.3	20 - 40	n/a	2015	Erosion of Natural Deposits
Vanadium (ppb)	Not Regulated	n/a	5.6	ND - 9.9	n/a	2015	Erosion of Natural Deposits

Lead and copper have been detected in our groundwater or imported water sources; these metals can increase when water contacts plumbing materials in your home. Because domestic plumbing is the primary source of these metals, drinking water regulations require testing tap water samples for lead and copper inside a number of representative homes every three years. If more than 10 percent of the tap samples from homes exceed the action level set by the USEPA, the water system is required to treat the water in a way that reduces the corrosiveness of the water. Testing completed in 2013 showed tap water samples with detectable lead and copper. Copper was detected below the Action Level and lead was detected in one sample above the Action Level. The next round of testing to be completed by LCID will occur in 2016. It is possible that lead levels at your home are higher than at other homes in the community as a result of materials used in your home's plumbing. Infants and young children are more vulnerable to the effects of lead in drinking water than the general population. You can minimize exposure to lead by using the first water in the morning out of your tap for something other than drinking or you can flush the water out of your tap before drinking by running the water for only a few seconds.

I#I 🗠 I	ROPOLIIAN W	ALER DIST		JUTHERN CAL		CAIE	D SURFACE WATER
Chemical	MCL	PHG	Average	-	MCL		Typical Source of Contaminant
		(MCLG)	Amount	Detections	Violation?		
adiologicals - Tested in 2							
Ipha Radiation (pCi/L)	15	n/a	ND	ND - 4	No		n of natural deposits
Beta Radiation (pCi/L)	50	n/a	5	4.0 - 6.0	No	,	of man-made or natural deposits
Jranium (pCi/L)	20	0.43	3	2.0-3.0	No	Erosio	n of natural deposits
norganic Chemicals - Tes	1						
luminum (ppb)	1000	60	156	88 - 200	No		n of natural deposits
rsenic (ppb)	10	0.004	2.1	2.1	No		n of natural deposits
arium (ppb)	1000	2000	122	122	No		n of natural deposits
-luoride (ppm)	2	1	0.8	0.6 - 1.2	No		n of natural deposits
Fluoride (ppm)	(i)	1	0.8	0.7 - 1.2	No		ent Related. Water additive for dental health
Nitrate and Nitrite as N (ppm)	10	10	ND	ND	No		Iture runoff and sewage
Nitrate as N (ppm)	10	10	ND	ND	No	Agricu	lture runoff and sewage
Secondary Standards - Te					1		
luminum (ppb)	200*	600	88	156 - 200	No		e from water treatment process; natural deposits
Chloride (ppm)	500*	n/a	100	98 - 102	No		or leaching from natural deposits
Color (color units)	15*	n/a	1	1 - 1	No		or leaching from natural deposits
Corrosivity (LSI)	non-corrosive	n/a	0.59	0.55 - 0.63	No		ntal balance in water
Odor (odor units)	3	n/a	2	2	No	Natura	Ily occurring organic materials
Specific Conductance (µmho/cm)	1,600	n/a	1040	1030 - 1060	No	Substa	ances that form ions in water
Sulfate (ppm)	500*	n/a	257	252 - 261	No		or leaching of natural deposits
Total Dissolved Solids (ppm)	1,000 [*]	n/a	660	654 - 665	No		or leaching of natural deposits
Turbidity (NTU)*	5*	n/a	ND	ND	No	Runof	or leaching of natural deposits
Unregulated Chemicals - ⁻	Tested in 2015						
Alkalinity (ppm)*	Not Regulated	n/a	126	123 - 129	n/a	Runoff	or leaching from natural deposits
Boron (ppb)	Not Regulated	n/a	120	120	n/a	Runoff	or leaching from natural deposits
Calcium (ppm)	Not Regulated	n/a	78	77 - 78	n/a	Runof	or leaching from natural deposits
Chromium VI (ppb)	Not Regulated	n/a	ND	ND	n/a	Indust	ry waste discharge/naturally present
Hardness, total (ppm)	Not Regulated	n/a	300	296 - 304	n/a	Runof	or leaching of natural deposits
Magnesium (ppm)	Not Regulated	n/a	27	26 - 28	n/a	Runof	or leaching from natural deposits
pH (pH units)*	Not Regulated	n/a	8.1	8.1	n/a	Hvdro	gen ion concentration
Potassium (ppm)	Not Regulated	n/a	4.9	4.8 - 5	n/a		or leaching from natural deposits
	Not Regulated Not Regulated	n/a n/a	4.9 100			Runof	or leaching from natural deposits
Sodium (ppm)				4.8 - 5	n/a	Runoff Runoff	
Sodium (ppm) OC (ppm) /anadium (ppb)* ppb = parts-per-billion; ppm = par ND = not detected; NC= not collec	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/I cted;< = average is	n/a n/a n/a = picoCuries pe less than the de	100 2.6 ND er liter; ntu = 1 etection limit fo	4.8 - 5 97 - 102 2.4 - 2.8 ND nephelometric turbic pr reporting purpose	n/a n/a n/a dity units; µmho/ es; MCL = Maxim	Runoff Runoff Variou Natura cm = m	or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal;
Potassium (ppm) Sodium (ppm) "OC (ppm) Vanadium (ppb)* ppb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go MW DSC treats your water by addin "he fluoride levels in the treated wa Turbidity - combined filter	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained	n/a n/a - picoCuries po less than the de cable; LSI = Lang turally occurring	100 2.6 ND er liter; ntu = 1 etection limit fo gelier Saturati level in order f 0.1 to 1.0 pp	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio or reporting purpose on Index; * Contam to help prevent den	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons	Runoff Runoff Variou Natura cm = m num Con by a se sumers.	or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal;
Sodium (ppm) OC (ppm) Vanadium (ppb)* opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wa	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained	n/a n/a - = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp T u	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio or reporting purpose on Index; * Contam to help prevent den m, as required by D	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons oepartment regul	Runoff Runoff Variou Natura cm = m num Con by a se sumers.	or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard.
Sodium (ppm) OC (ppm) Vanadium (ppb)* opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wa Turbidity - combined filter	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained reffluent	n/a n/a - = picoCuries po less than the de cable; LSI = Lang turally occurring within a range o Treatment	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp T u	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons Department regul TT	Runoff Runoff Variou Natura cm = m num Con by a se sumers.	for leaching from natural deposits s natural and man-made sources lly-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant
Sodium (ppm) OC (ppm) Vanadium (ppb)* ppb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go MWDSC treats your water by addin 'he fluoride levels in the treated wa	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained reffluent	n/a n/a n/a - = picoCuries per less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique	100 2.6 ND er liter; ntu = F etection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons Department regul TT Violation?	Runoff Runoff Variou Natura cm = m num Con d by a su sumers. ations	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off
Sodium (ppm) OC (ppm) /anadium (ppb)* opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated water Turbidity - combined filter Percentage of samples less tha Furbidity is a measure of the cloud n Metropolitan's treated water is a	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na atter are maintained • effluent ment n 0.3 NTU iness of the water, good indicator of e	n/a n/a n/a = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration.	100 2.6 ND er liter; ntu = r tetection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons oepartment regul TT Violation? No No might include ha technique". A	Runoff Runoff Variou Natura cm = m um Coo by a so sumers. ations Soil ru Soil ru Soil ru armful m treatme	i or leaching from natural deposits s natural and man-made sources lly-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required
Sodium (ppm) OC (ppm) /anadium (ppb)* opb = parts-per-billion; ppm = par ID = not detected; NC= not collec PHG = California Public Health Go W DSC treats your water by addin he fluoride levels in the treated wat Furbidity - combined filter) Highest single turbidity measure control of the cloud n Metropolitan's treated water is a	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained reffluent ement n 0.3 NTU iness of the water, good indicator of e el of contaminants	n/a n/a n/a = picoCuries pe less than the dé cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water	100 2.6 ND er liter; ntu = r tetection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is o r that are diffic	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio por reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which alled a "treatment ult and sometimes	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons bepartment regul TT Violation? No No might include ha technique". A impossible to m	Runoff Runoff Variou Natura cm = m num Con by a so sumers. ations Soil ru Soil ru Soil ru armful m treatme easure	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly.
Sodium (ppm) OC (ppm) Vanadium (ppb)* opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wa Turbidity - combined filter I) Highest single turbidity measure 2) Percentage of samples less tha Furbidity is a measure of the cloud n Metropolitan's treated water is a	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained reffluent ement n 0.3 NTU iness of the water, good indicator of e el of contaminants	n/a n/a n/a = picoCuries pe less than the dé cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water	100 2.6 ND er liter; ntu = F etection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is o r that are diffic TION DISTR	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons bepartment regul TT Violation? No No might include ha technique". A impossible to m NSYSTEM WA	Runoff Runoff Variou Natura cm = m num Con by a so sumers. ations Soil ru Soil ru Soil ru armful m treatme easure	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly.
Sodium (ppm) OC (ppm) Vanadium (ppb)* opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wa Turbidity - combined filter I) Highest single turbidity measure 2) Percentage of samples less tha Furbidity is a measure of the cloud n Metropolitan's treated water is a	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted; < = average is al; n/a = not applic g fluoride to the na ater are maintained effluent n 0.3 NTU iness of the water, good indicator of e el of contaminants	n/a n/a n/a = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA	100 2.6 ND er liter; ntu = 1 etection limit fr gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is o r that are diffic TION DISTR age	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio por reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which alled a "treatment ult and sometimes	n/a n/a n/a dity units; µm ho/ is; MCL = Maxim inant is regulated tal caries in cons Department regul TT Violation? No No might include ha technique". A impossible to m N SYSTEM WA	Runoff Runoff Variou Natura cm = m dum Cord by a so sumers. ations Soil ru Soil ru Soil ru armful m treatme easure TER Q	i or leaching from natural deposits s natural and man-made sources lly-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY
Sodium (ppm) OC (ppm) Vanadium (ppb)* ppb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go MW DSC treats your water by addin he fluoride levels in the treated water Turbidity - combined filter 1) Highest single turbidity measure	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic gfluoride to the na atter are maintained • effluent mo.3 NTU iness of the water, good indicator of e el of contaminants LA C/ MCL	n/a n/a n/a = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffic TION DISTR age unt	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of	n/a n/a n/a dity units; µm ho/ s; MCL = Maxim inant is regulated tal caries in cons Department regul Violation? No No might include ha technique". A impossible to m N SYSTEM WA	Runoff Runoff Variou Natura cm = m cm Cord by a so sumers. ations Soil ru Soil ru Soil ru Soil ru armful m treatme easure TER Q	i or leaching from natural deposits s natural and man-made sources lly-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source
Sodium (ppm) OC (ppm) Vanadium (ppb)* Opb = parts-per-billion; ppm = par ND = not detected; NC = not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wat Turbidity - combined filter 1) Highest single turbidity measure 2) Percentage of samples less tha Turbidity is a measure of the cloud n Metropolitan's treated water is a process intended to reduce the lev	Not Regulated Not Regulated Not Regulated Is-per-million; pCi/l cted;< = average is al; n/a = not applic gfluoride to the na ater are maintained effluent of fluent iness of the water, good indicator of e el of contaminants LA C/ MCL (MRDL/MRDLC	n/a n/a n/a = picoCuries po- less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA Aver. Amo	100 2.6 ND er liter; ntu = 1 etection limit fi gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is o r that are diffic TION DISTR age unt	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic perpendent of the prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections	n/a n/a n/a s; MCL = Maxim inant is regulated tal caries in cons bepartment regul Violation? No No might include ha technique". A impossible to m NSYSTEM WA	Runoff Runoff Variou Natura cm = m cm Cord by a so sumers. ations Soil ru Soil ru	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant
Sodium (ppm) OC (ppm) Vanadium (ppb)* Opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wat Turbidity - combined filter 1) Highest single turbidity measure 2) Percentage of samples less tha Turbidity is a measure of the cloud n Metropolitan's treated water is a process intended to reduce the lev	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/L cted;< = average is al; n/a = not applic g fluoride to the na atter are maintained effluent effluent iness of the water, good indicator of e el of contaminants LA C/ MCL (MRDL/MRDLC 80	n/a n/a n/a = picoCuries per less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA Aver. G) Aver. 31.	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp Tu M eas particulate ma . Filtration is of r that are diffice TION DISTR age unt 6 8	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections 25.2 - 39.2	n/a n/a n/a dity units; µmho/ is; MCL = Maxim inant is regulated tal caries in cons Department regul TT Violation? No No might include ha technique". A impossible to m N SYSTEM WA Wiola	Runoff Runoff Variou Natura cm = m oum Coi d by a si sumers. ations Soil ru Soil Soil Soil Soil Soil Soil Soil Soil	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection
Sodium (ppm) OC (ppm) Vanadium (ppb)* Opb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wat Turbidity - combined filter 1) Highest single turbidity measure 2) Percentage of samples less tha Furbidity is a measure of the cloud n Metropolitan's treated water is a process intended to reduce the lev fotal Trihalomethanes (ppb) faloacetic Acids (ppb) Chlorine Residual (ppm)	Not Regulated Not Regulated Not Regulated ts-per-million; pCi/L cted;< = average is al; n/a = not applic g fluoride to the na atter are maintained reffluent ment n 0.3 NTU iness of the water, good indicator of e el of contaminants LA C/ MCL (MRDL/MRDLO 80 60	n/a n/a n/a = picoCuries per less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA Aver 31. 31. 12.	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffice TION DISTR age unt 6 8 7	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbid or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8	n/a n/a n/a in/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons Department regul TT Violation? No No No No No No SySTEM WA Viola technique". A impossible to m N SYSTEM WA	Runoff Runoff Variou Natura cm = m oum Coi d by a si sumers. ations Soil ru Soil Soil Soil Soil Soil Soil Soil Soil	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection
Sodium (ppm) OC (ppm) /anadium (ppb)* opb = parts-per-billion; ppm = par ND = not detected; NC = not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated wat Turbidity - combined filter I) Highest single turbidity measure 2) Percentage of samples less tha Furbidity is a measure of the cloud in Metropolitan's treated water is a process intended to reduce the lev fotal Trihalomethanes (ppb) taloacetic Acids (ppb) Chlorine Residual (ppm) Turbidity (ntu)	Not Regulated Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted; < = average is al; n/a = not applic g fluoride to the na atter are maintained reffluent ment n 0.3 NTU iness of the water, good indicator of e el of contaminants LA C/ MCL (MRDL/MRDL0 80 60 (4 / 4)	n/a n/a n/a = picoCuries per less than the de able; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA NADA IRRIGA Avers G) Amo 31. 12.	100 2.6 ND er liter; ntu = 1 tection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffic TION DISTR age unt 8 7 4	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8 0.24 - 2.2	n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons Department regul TT Violation? No No might include ha technique". A impossible to m NSYSTEM WA	Runoff Runoff Variou Natura Cm = m um Coo d by a sc sources. ations Soil ru Soil ru Soil ru Soil ru Soil ru Soil ru Easure TER Q CL CL No No	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection Disinfectant added for treatment
Sodium (ppm) OC (ppm) 'anadium (ppb)* 'pb = parts-per-billion; ppm = par ID = not detected; NC= not collec PHG = California Public Health Go W DSC treats your water by addin he fluoride levels in the treated wat Furbidity - combined filter) Highest single turbidity measure) Percentage of samples less tha urbidity is a measure of the cloud n Metropolitan's treated water is a roccess intended to reduce the lev otal Trihalomethanes (ppb) aloacetic Acids (ppb) horine Residual (ppm) urbidity (ntu) olor (color units)	Not Regulated Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted; < = average is al; n/a = not applic g fluoride to the na ater are maintained reffluent mont n 0.3 NTU iness of the water, good indicator of e el of contaminants LA C/ MCL (MRDL/MRDL(80 60 (4 / 4) 5*	n/a n/a n/a - = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA Aver. G) AT 31. 1. 1. 0.4	100 2.6 ND er liter; ntu = r tetection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is o r that are diffic TION DISTR age unt 6 8 7 4 1	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CTDISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8 0.24 - 2.2 0.1 - 3.2	n/a n/a n/a n/a n/a s; MCL = Maxim inant is regulated tal caries in cons bepartment regul TT Violation? No might include ha technique". A impossible to m N SYSTEM WA M Viola N N N N N N N N N N N N N N N N N N N	Runoff Runoff Variou Natura cm = m um Cord by a so sources. ations Soil ru Soil ru Soil ru Soil ru Soil ru Soil ru Soil ru Easure TER Q CL No No No	i or leaching from natural deposits s natural and man-made sources lly-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. JALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection Disinfectant added for treatment Erosion of natural deposits
Sodium (ppm) OC (ppm) Vanadium (ppb)* Opb = parts-per-billion; ppm = par ND = not detected; NC = not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated water Turbidity - combined filter I) Highest single turbidity measure 2) Percentage of samples less tha Turbidity is a measure of the cloud n Metropolitan's treated water is a brocess intended to reduce the lev Total Trihalomethanes (ppb) Haloacetic Acids (ppb) Chlorine Residual (ppm) Turbidity (ntu) Color (color units) Dador (threshold) Four locations in the distribution system a statu = nephelometric turbidity units; ND =	Not Regulated Not Regulated Not Regulated Not Regulated ts-per-million; pCi/L cted;< = average is al; n/a = not applic g fluoride to the na atter are maintained r effluent enent n 0.3 NTU iness of the water, good indicator of e rel of contaminants LA C/ MCL (MRDL/MRDLC 80 60 (4/4) 5* 15* 3* are tested monthly for o not detected; MRDL =	n/a n/a n/a - = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA Aver. 3) Aver. 3.1 1.2 0.4 3.1 1.1 0.4 0.3 1.1 1.1 0.4 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	100 2.6 ND er liter; ntu = 1 detection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffice TION DISTR age unt 6 8 7 4 1 Disnfectant Lev (taste, odor, color	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8 0.24 - 2.2 0.1 - 3.2 3 - 7.5 1 ons are tested quarterly el; MRDLG = Maximum	n/a n/a n/a n/a dity units; µmho/ es; MCL = Maxim inant is regulated tal caries in cons Department regul TT Violation? No No might include ha technique". A impossible to m N SYSTEM WA Violat NO NO NO NO NO NO NO NO NO NO NO NO NO	Runoff Runoff Variou Natura cm = m um Cord by a sc sumers. ations Soil ru Soil soil soil Soil Soil Soil Soil Soil Soil Soil S	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection Disinfectant added for treatment Erosion of natural deposits Erosion of natural deposits Usually chlorine pacetic acids.
Sodium (ppm) OC (ppm) /anadium (ppb)* Opb = parts-per-billion; ppm = par ND = not detected; NC = not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated water Turbidity - combined filter I) Highest single turbidity measure 2) Percentage of samples less tha Turbidity is a measure of the cloud in Metropolitan's treated water is a brocess intended to reduce the lev Total Trihalomethanes (ppb) taloacetic Acids (ppb) chlorine Residual (ppm) Turbidity (ntu) Color (color units) Color (color units) Color (color units) Total Color in the distribution system a titu = nephelometric turbidity units; ND =	Not Regulated Not Regulated Not Regulated Not Regulated ts-per-million; pCi/L cted;< = average is al; n/a = not applic g fluoride to the na atter are maintained r effluent enent n 0.3 NTU iness of the water, good indicator of e rel of contaminants LA C/ MCL (MRDL/MRDLC 80 60 (4/4) 5* 15* 3* are tested monthly for o not detected; MRDL =	n/a n/a n/a - = picoCuries pe less than the de cable; LSI = Lang turally occurring within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA Aver. 3) Aver. 3.1 1.2 0.4 3.1 1.1 0.4 0.3 1.1 1.1 0.4 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	100 2.6 ND er liter; ntu = 1 tetection limit ff gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffic TION DISTR age unt 6 8 7 4 1 dity. Two location (taste, odor, color COPPER AC COPPER AC	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbic or reporting purpose on Index; * Contam to help prevent dem m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CTDISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8 0.24 - 2.2 0.1 - 3.2 3 - 7.5 1 poss are tested quarterly el; MRDLG = Maximun ar)	n/a n/a n/a n/a n/a n/a s; MCL = Maxim inant is regulated tal caries in cons bepartment regul T Violation? No might include ha technique". A impossible to m N SYSTEM WA Viola N for trihalomethanes n Residual Disinfect RESIDENTIAL AL /	Runoff Runoff Variou Natura cm = m um Cord by a sc sumers. ations Soil ru Soil soil soil Soil Soil Soil Soil Soil Soil Soil S	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection Disinfectant added for treatment Erosion of natural deposits Erosion of natural deposits Usually chlorine pacetic acids.
Sodium (ppm) OC (ppm) /anadium (ppb)* Opb = parts-per-billion; ppm = par ND = not detected; NC = not collec PHG = California Public Health Go IW DSC treats your water by addin he fluoride levels in the treated water Turbidity - combined filter I) Highest single turbidity measure 2) Percentage of samples less tha Furbidity is a measure of the cloud in Metropolitan's treated water is a brocess intended to reduce the lev Fotal Trihalomethanes (ppb) daloacetic Acids (ppb) Chlorine Residual (ppm) 'urbidity (ntu) Dolor (color units) Dodor (threshold) four locations in the distribution system a tu = nephelometric turbidity units; ND = Contaminant is regulated by a secondar	Not Regulated Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic g fluoride to the na ater are maintained effluent ement n 0.3 NTU iness of the water, good indicator of e el of contaminants LAC / MCL (MRDL/MRDLO 80 60 (4 / 4) 5* 15* 3* are tested monthly for not detected; MRDL = y standard to maintain	n/a n/a n/a n/a - = picoCuries pe less than the de cable; LSI = Lang turally occurring turally occurri	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffice TION DISTR age unt 6 8 7 4 1 dity. Two location Disnfectant Leve (taste, odor, color COPPER AC Copper AC	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio preporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8 0.24 - 2.2 0.1 - 3.2 3 - 7.5 1 nos are tested quarterly el; MRDLG = Maximum rt Sites Exceeding	n/a n/a n/a n/a n/a n/a s; MCL = Maxim inant is regulated tal caries in cons bepartment regul T Violation? No might include ha technique". A impossible to m N SYSTEM WA No	Runoff Runoff Variou Natura cm = m oum Cord by a so sumers. ations Soil ru Soil ru Soil ru Soil ru Soil ru Soil ru Soil ru armful m treatme easure TER Q CL tion? No No No So So So So So So So So So So So So So	i or leaching from natural deposits s natural and man-made sources lly-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection Disinfectant added for treatment Erosion of natural deposits Erosion of natural deposits Erosion of natural deposits Usually chlorine pacetic acids. Goal;
Sodium (ppm) OC (ppm) Vanadium (ppb)* ppb = parts-per-billion; ppm = par ND = not detected; NC= not collec PHG = California Public Health Go WDSC treats your water by addin 'he fluoride levels in the treated water Turbidity - combined filter 1) Highest single turbidity measure 2) Percentage of samples less tha Turbidity is a measure of the cloud in Metropolitan's treated water is a process intended to reduce the lev Fotal Trihalomethanes (ppb) taloacetic Acids (ppb) Chlorine Residual (ppm) Turbidity (ntu) Color (color units) Ddor (threshold) Four locations in the distribution system a tu = nephelometric turbidity units; ND = Contaminant is regulated by a secondar	Not Regulated Not Regulated Not Regulated Not Regulated ts-per-million; pCi/l cted;< = average is al; n/a = not applic og fluoride to the na atter are maintained • effluent effluent effluent iness of the water, good indicator of e el of contaminants LA C/ MCL (MRDL/MRDL(80 60 (4 / 4) 5* 15* 3* are tested monthly for on not detected; MRDL = y standard to maintain	n/a n/a n/a n/a - = picoCuries pe- less than the de cable; LSI = Lang within a range o Treatment Technique 0.3 NTU 95% an indication of ffective filtration. in drinking water NADA IRRIGA NADA IRRIGA NADA IRRIGA Aver 3) Amo 31. 12. 1.7. 0.0. 3. 3. 1 1 bdor, color and turbi Maximum Resdiual aesthetic qualities LEAD AND of 90th Per Value	100 2.6 ND er liter; ntu = 1 etection limit for gelier Saturati level in order f 0.1 to 1.0 pp Tu Meas particulate ma . Filtration is of r that are diffic TION DISTR age unt 6 8 7 1 1 dity. Two location I bisnfectant Leve (taste, odor, color COPPER AC Centile ue	4.8 - 5 97 - 102 2.4 - 2.8 ND hephelometric turbio perpetion etric turbio or reporting purpose on Index; * Contam to help prevent den m, as required by D rbidity urements 0.05 100% tter, some of which called a "treatment ult and sometimes CT DISTRIBUTIO Range of Detections 25.2 - 39.2 7.7 - 15.8 0.24 - 2.2 0.1 - 3.2 3 - 7.5 1 nos are tested quarterly el; MRDLG = Maximum rtion LEVELS AT Sites Exceeding Number of Site	n/a	Runoff Runoff Variou Natura cm = m cm Cord by a so sumers. ations Soil ru Soil Soil Soil Soil Soil Soil Soil Soil	i or leaching from natural deposits s natural and man-made sources Ily-occurring; industrial waste discharge icromhos per centimeter; ntaminant Level; (MCLG) = federal MCL Goal; econdary standard. Typical Source of Contaminant n-off n-off nicroorganisms. Low turbidity nt technique is a required directly. UALITY Typical Source Of Contaminant Byproducts of chlorine disinfection Byproducts of chlorine disinfection Disinfectant added for treatment Erosion of natural deposits Erosion of natural deposits Usually chlorine vacetic acids. Goal; Typical Source Of Contaminant

LA CAÑADA IRRIGATION DISTRICT 2015 ANNUAL DRINKING WATER QUALITY REPORT

alguien que lo entienda bien.

La Cañada Irrigation District (LCID) serves approximately 9,500 people in the Northwest area of La Cañada Flintridge. LCID obtains drinking water from three sources - tunnel water in the Angeles National Forest watershed, two conventional vertical wells, and imported surface water purchased from the Foothill Municipal Water District. Foothill purchases water from the Metropolitan Water District of Southern California and then sells the water to various retailers in La Cañada Flintridge, La Crescenta and Altadena. The General Manager oversees the company's operations and reports to a five member Board of Directors. The Board meets at 7:30 pm every 2nd Tuesday of the month at 1443 Foothill Boulevard, La Cañada Flintridge. For more information, you may contact Mr. Douglas Caister, General Manager, at (818) 790-6749.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the California State Water Resources Control Board (SWRCB) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. SWRCB regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency (USEPA) Safe Drinking Water Hotline (1-800-426-4791).

customers. This is equivalent to approximately seven hundred and two million gallons. One acre foot is enough water to cover one acre of land, one foot deep with water, or approximately 325,000 gallons. Less than five percent of the water came from the Picken's Canyon tunnels in the San Gabriel Mountains high above any residential area. The two tunnels closely resemble buried, horizontal mine shafts. Two conventional vertical wells produced seven percent of the annual water production. Ninety percent of the total was purchased from the Metropolitan Water District of Southern California, a regional wholesaler of imported surface water. This water is a blend of Colorado River water delivered through Metropolitan's Colorado River Aqueduct and surface water from Northern California delivered through the State of California Water Project Aqueduct. Metropolitan's water is filtered and disinfected with chlorine (followed by chloramines) at the Weymouth Filtration Plant in La Verne. Chlorine disinfectant is added to Picken's Canyon tunnel water before it blends with Metropolitan's water in lower reservoirs. Chlorine kills microorganisms and prevents re-growth of bacteria in storage reservoirs and distribution pipelines.

LCID is required by the California State Water Resources Control Board Division of Drinking Water (DDW) to test well water and tunnel water for organic chemicals, minerals, metals, and bacteria. Also, we are required to test regularly for bacteria in our distribution system. Lead and copper are tested in tap water from selected residences. Metropolitan is responsible for water quality testing of their treated water.

As in past years, the Detected Contaminant Chart compares the guality of your tap water to State drinking water standards. The water guality chart lists all the regulated drinking water contaminants (and unregulated contaminants reguiring monitoring) that were detected during the 2015 calendar year. More than 100 regulated contaminants have been tested that were not detected in drinking water delivered by LCID: the list of non-detected contaminants is not included in the chart. Certain regulated chemicals are monitored less frequently than once each year. The results from the most recent testing done in accordance with the monitoring regulations and the respective sampling year are noted in each table. Some of the data, although more than one year old, are representative of the current drinking water quality.

In general, the sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include: 1) microbial contaminants, such as virus and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; 2) inorganic contaminants, such as salts and metals, that can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming; 3) pesticides and herbicides that may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; 4) organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural application, and septic systems; 5) radioactive contaminants, that can be naturally occurring or be the result of oil and gas production and mining activities. Note: In 2015, LCID's microbial contaminant reported two total positive samples were collected. Once notified, LCID collected supplemental samples from the two locations and those were reported as non-detect and absent for total coliform.

Groundwater is protected from many infectious organisms, such as the parasite Cryptosporidium, by the natural filtration action of water percolating through soils. Current conventional surface water treatment methods remove most Cryptosporidium organisms when they are present, but 100 percent elimination cannot be guaranteed. Metropolitan has detected Cryptosporidium in some areas of their watershed but has never detected the organism in their treated water. There is no evidence that Cryptosporidium has entered our water supply. However, some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

La Cañada Irrigation District Urban Water Management Plan (UWMP) The California Urban Water Management Act reguires each urban water supplier, with more than 3,000 service connections or providing more than 3,000 AF/Y to prepare an UWMP. La Cañada Irrigation District prepared its 2005 UWMP and submitted it to the Department of Water Resources, in accordance with the UWMP Act. LCID's UWMP was adopted on December 13, 2005, and was made available to the public for review. The Plan is filed and can be accessed in the public library and the District's main office. Today, LCID does not meet the minimum requirements for the submittal of an UWMP.

La Cañada Irrigation District Source Water Assessments A source water assessment was conducted for Wells 01 and 06 of the La Cañada Irrigation District water system in July 2002. The source is considered most vulnerable due to the following activities associated with contaminants in the water supply: automobile (gas stations), dry cleaners, drinking water treatment plants, wells (water supply), chemical/ petroleum processing/storage, historic waste dumps/landfills, injection wells/dry wells/sumps, automobile repair shops, utility stations (maintenance areas), housing (high density), parking lots/malls, septic systems (high density), appliance/electronic repair, medical/dental offices/ clinics, fertilizer, pesticide/herbicide application, motor pools, office buildings/complexes, schools, and sewer collection systems. The source is considered most vulnerable to the following activities not associated with any detected contaminants: above ground storage tanks, construction/ demolition staging areas and transportation corridors (freeways/state highways). A source water assessment was also conducted for Pickens Tunnel of the La Cañada Irrigation District water system in July 2002. The source is considered most vulnerable to the following activities not associated with any detected contaminants: managed forests and wells (water supply). A copy of the complete assessment may be viewed at: La Cañada Irrigation District 1443 Foothill Boulevard, La Cañada, CA 91011. You may request a summary of the assessment be sent to you by contacting: Douglas Caister, General Manager, at (818) 790-6749.

Metropolitan Water District of Southern California (MWDSC) Source Water Assessment "In December 2002. MWDSC completed its source water assessment of its Colorado River and State Water Project supplies. Colorado River supplies are considered to be most vulnerable to recreation, urban/storm water runoff, increasing urbanization in the watershed and wastewater. State Water Project supplies are considered to be most vulnerable to urban/storm water runoff, wildlife, agriculture, recreation and wastewater. A copy of the assessment can be obtained by contacting Metropolitan by phone at (213) 217-6850. If you have any guestions, please feel free to contact: Marcia Torobin, Metropolitan Water District of Southern California P.O. Box 54153 Los Angeles, CA 90054-0153.

(i) In the fall of 2007, MWDSC began treating your water by adding fluoride to the naturally occurring level in order to help prevent dental caries in consumers. The fluoride levels in the treated water are maintained within a range of 0.1 to 1.0 ppm, as required by Department regulations.

Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con

In 2015, La Cañada Irrigation District (LCID) distributed approximately 2,163 acre feet of water to its