2016 Consumer Confidence Report

Water System Name: Morning Star Packing Co Report Date: 04/24/2017

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2016 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Groundwater from wells #1, #2, #4 and #5

Your water comes from 4 sources: Wells located at 13448 Volta Road, Los Banos, Ca. 93635

Drinking water source assessments were completed on April 2002 for wells #1, #2, #4 and #5. There are no detectable contaminants, the wells are not vulnerable to activities located near the wells.

Opportunities for public participation in decisions that affect drinking water quality: Regularly –scheduled water board or city/county council meetings are not being held. The Morning Star Packing Co. CCR is distributed to seasonal colleagues in their paychecks and/or annual orientation packets. Fulltime colleagues receive the Morning Star Packing Co CCR via email.

For more information about this report, or have any questions relating to your drinking water, please contact Tod Harter at 209-829-5002 or tharter@morningstarco.com

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water are from groundwater wells. As water flows through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3 and 4 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one-year-old.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA						
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of months in violation	MCL	MCLG	Typical Source of Bacteria	
Total Coliform Bacteria (state Total Coliform Rule)	0		1 positive monthly sample	0	Naturally present in the environment	
Fecal Coliform or <i>E. coli</i> (state Total Coliform Rule)	0		A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive		Human and animal fecal waste	
E. coli (federal Revised Total Coliform Rule)	0		(a)	0	Human and animal fecal waste	

(a) Routine and repeat samples are total coliform-positive and either is *E. coli*-positive or system fails to take repeat samples following *E. coli*-positive routine sample or system fails to analyze total coliform-positive repeat sample for *E. coli*.

TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER							
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	2015	5	.0015	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	2015	5	.1415	0	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Sodium (ppm)	12/16/14	49	none	none	none	Salt present in the water and is generally naturally occurring	
Hardness (ppm)	12/14/14	179	none	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring	

^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 4 - SAMELING RESULTS	LTS SHOWING THE DETECTION REGULATED AND NON-REGULATED CHEMIC Units MCL DLR #1 #2 #4 #5						
Oplaine		MCL	DLR				
Calcium	mg/L			41	49	45	51
Magnesium	mg/L			39	29	27	3
Potassium	mg/L			1.8	1.9	2.1	1.9
Hardness Total as CaCO3	mg/L			210	224	224	255
Hydroxide OH	mg/L			0	0	0	(
Carbonate	mg/L			0	0	0	(
Bicarbonate HCO3	mg/L			256	244	244	30
Sulfate SO4	mg/L	500	0.5	55	63	68	78
Chloride CL	mg/L	500		50	62	87	97
Nitrate	mg/L	45	2	0.74	1.8	1.7	2.4
Fluoride F	mg/L	2	0.1	0	0	0	(
рН				7.9	7.5	7.6	7.7
Specific Conductance (E.C.)	umho/cm+	1600		655	800	778	988
Total dissolved solids	mg/L			418	440	483	568
Apparent Color (Unfiltered)	Units	15		3	3	3	;
Odor Threshold	TON	3	1	1	1	1	
Lab Turbidity (NTU)	NTU	5		0.05	0.03	0.27	0.4
MBAS	mg/L	0.5		0	0	0	(
Aluminum Al	ug/L	1000	50	0	0	0	(
Antimony	ug/L	6	6	0	0	0	(
Arsenic As	ug/L	10	2	0	3	3	(
Barium Ba	ug/L	1000	100	86	100	105	110
Beryllium	ug/L	4	1	0	0	0	(
Cadmium Cd	ug/L	5	1	0	2	0	(
Hexavalent Cr6 *	ug/L	10	1	34*	16*	25*	17
Copper Cu	ug/L	1000	50	0	0	0	(
Iron Fe	ug/L	300	100	0	0	0	(
Manganese Mn	ug/L	50	20	0	0	0	(
Mercury Hg	ug/L	2	1	0	0	0	(
Selenium Se	ug/L	50	0	0	0	0	2.3
Sodium	mg/L			49	75	75	103
Color	ug/L	15	0	0	3	3	:
Aggressiveness Index				12.23	11.89	11.95	12.2
Boron	ug/L	1000	100	455	536	617	607
Nitrate + Nitrite as Nitrogen N	ug/L	10000	400	903	2032	1580	3160
Nitrite as Nitrogen N	ug/L	1000	400	0	0	0	(
Vanadium	ug/L	50	3	14	4	13	7.:
Gross Alpha	PCI/L	15	3	2.88	<1.06		2.52
Gross Alpha Counting Error	PCI/L	1.0		1.7	2.03		1.48

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT							
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language			
Violation of Title 22, California Code of Regulations, Section 64431, hexavalent chromium (MCL)	The State Water Resources Control Board-Division of Drinking Water has issued Compliance Order #03-11-15R- 007	01/2020	Propose and implement project to ensure that the water delivered to customers meets the hexavalent chromium MCL and continue quarterly hexavalent chromium monitoring	You do not need to use an alternative water supply (e.g. bottled water). This is not an immediate risk. If it had been you would have been notified immediately. However, some people who drink water containing hexavalent chromium in excess of MCL over many years may have an increased risk of getting cancer. If you have other health issues concerning the consumption of this water, you may wish to consult your doctor.			

Summary Information for Operating Under a Variance or Exemption

Senate Bill 385 signed by the Governor on September 4, 2015 adding new Section 116431 to Chapter 4, Part 12. Division 104 of the California Health and Safety Code allowing provisions achieving compliance of Compliance Order No 03-11-15R-007 Violation of Tittle 22, California Code of Regulations, Section 64431, hexavalent chromium (MCL) by January 1, 20120

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Morning Star Packing Co is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.