Consumer Confidence Report Certification Form

(to be submitted with a copy of the CCR)

(to certify electronic delivery of the CCR, use the certification form on the State Board's website at $\underline{ http://www.waterboards.ca.gov/drinking_water/certlic/drinkingwater/CCR.shtml) }$

Water System Name: CASA DULCE ESTATES

Water System Number: 1900717

Γhe v	vater syste	•			onsumer Confidence ropriate notices of a	-		Further the syste	em.
		e information cor	ntained	l in the repo	ort is correct and co s Control Board, Div	onsistent with th	he compliance	•	J 111
Cert	ified By:	Name							
		Signature							
		Title							
		Phone Number)		Date			
	apply and	fill-in where appr	opriate	?:	efforts taken, pleas delivery methods.	·	, ,	Ü	18
	_ "Good fa methods		used to	o reach non-	-bill paying custom	ers. Those effor	rts included the	e following	
	F	osted the CCR or	the in	nternet at ht	tp://				
	N	Mailed the CCR to	postal	l patrons wit	thin the service are	a (attach zip co	odes used)		
	A	dvertised the ava	ilabilit	ty of the CCI	R in news media (at	ttach a copy of	press release)		
					vspaper of general o the newspaper and			he	
	F	osted the CCR in	public	places (atta	ach a list of locatior	ns)			
		Delivery of multipluch as apartment	_		single bill address schools	es serving seve	eral persons,		
	г	Delivery to commu	ınity oı	rganizations	s (attach a list of org	ganizations)			
	(Other (attach a lis	t of oth	ner methods	used)				
	For syst	ems servina at le	ast 100	0.000 person	ns: Posted CCR on a	a publicly-acces	ssible internets	site	
	_			•		-		3100	
					CCR to the Califorr			n	
	_								

2016 Consumer Confidence Report

Water System Name: CASA DULCE E	STATES Re	eport Date:	March 2017

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2016.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, this Source is Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 1 source(s): Well 02

Opportunities for public participation in decisions that affect drinking water quality: Regularly-scheduled water board or city/county council meetings are held at Casa Dulce Estates every 2nd Sunday of June and December at 1:00pm. Time and date are announced in a mailing.

For more information about this report, or any questions relating to your drinking water, please call (805) 404-7765 and ask for Judith Cannon.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG):

The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level

(MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal

(MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (µg/L)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5 and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1	Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER											
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant						
Copper (ppm)	10 (2016)	0.09	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives						

	Table 2 - SAMPLING RESULTS FOR SODIUM AND HARDNESS												
Chemical or Constituent (and reporting units)	Sample Date	Detected Detections (MCLG)				Typical Sources of Contaminant							
Sodium (ppm)	(2014)	55	N/A	none	none	Salt present in the water and is generally naturally occurring							
Hardness (ppm)	(2014)	161	N/A	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring							

Table 3 -	DETECTION	OF CONTA	AMINANTS W	TTH A PRI	MARY DRIN	KING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ppb)	(2014)	9	N/A	10		Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Fluoride (ppm)	(2014)	0.3	N/A	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.

Nitrate as N (ppm)	(2016)	0.4	N/A	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
--------------------	--------	-----	-----	----	----	---

Table 4 - DETE	CTION OF CO	NTAMINAN	TS WITH A S	ECON	<u>IDARY</u> DRI	NKING WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant
Chloride (ppm)	(2014)	32	N/A	500	n/a	Runoff/leaching from natural deposits; seawater influence
Specific Conductance (umhos/cm)	(2014)	539	N/A	1600	n/a	Substances that form ions when in water; seawater influence
Sulfate (ppm)	(2014)	112	N/A	500	n/a	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	(2014)	380	N/A	1000	n/a	Runoff/leaching from natural deposits
Turbidity (NTU)	(2014)	0.4	N/A	5	n/a	Soil runoff
Zinc (ppm)	(2014)	0.25	N/A	5	n/a	Runoff/leaching from natural deposits

	Table 5 - DETECTION OF UNREGULATED CONTAMINANTS													
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant									
Boron (ppm)	(2014)	0.1	N/A	1	The babies of some pregnant women who drink water containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.									

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Casa Dulce Estates* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Monitoring and Reporting Requirement

For Arsenic (As) results above 5 ppb up to and including 10 ppb: While your drinking water meets the federal and state standard for arsenic, it does contain low levels of arsenic. The arsenic standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from the drinking water. The U.S. Environmental Protection Agency continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

2016 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 02 of the CASA DULCE ESTATES water system in April, 2002.

Well 02 - is considered most vulnerable to the following activities not associated with any detected contaminants: Septic systems - low density [<1/acre]
Injection wells/dry wells/ sumps

Discussion of Vulnerability

This water system draws from one well and the water delivered from this system is known to have elevated nitrate levels -

over half the MCL of 45 ppm. Los Angeles County Environmental Health currently oversees this system and conducts the required monitoring tests.

Acquiring Information

A copy of the complete assessment may be viewed at: Los Angeles County Environmental Health 2525 Corporate Pl. Room 150 Monterey Park, CA 91754

You may request a summary of the assessment be sent to you by contacting: Russ Johnson Chief Environmental Health Specialist (323) 881-4147 (323) 269-4327 (fax)

Casa Dulce Estates Analytical Results By FGL - 2016

		MICROB	IOLOGICA	AL CONTAM	IINANT	s			
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Total Coliform Bacteria			0	5%	n/a			0	-
Club House	SP 1613614-3					2016-11-11	<1.0		
Lot 01 - Martin House	SP 1614608-5					2016-12-07	<1.0		
Lot 02 - Hamilton House	SP 1614608-2					2016-12-07	<1.0		
Lot 02 - Hamilton House	SP 1613614-4					2016-11-11	<1.0		
Lot 09 - Cannon House	SP 1614608-3					2016-12-07	<1.0		
Lot 14 -	SP 1614608-4					2016-12-07	<1.0		
Zimmerman House	SP 1614608-1					2016-12-07	<1.0		
Zimmerman House	SP 1613614-1					2016-11-11	<1.0		
Zimmerman House	SP 1613524-1					2016-11-09	Present		
Zimmerman House	SP 1612128-1					2016-10-11	Absent		
Zimmerman House	SP 1610792-1					2016-09-14	Absent		
Zimmerman House	SP 1609214-1					2016-08-10	Absent		
Zimmerman House	SP 1607902-1					2016-07-13	Absent		
Zimmerman House	SP 1606527-1					2016-06-08	Absent		
Zimmerman House	SP 1605275-1					2016-05-11	Absent		
Zimmerman House	SP 1604094-1					2016-04-13	Absent		
Zimmerman House	SP 1602674-1					2016-03-09	Absent		
Zimmerman House	SP 1601583-1					2016-02-10	Absent		
Zimmerman House	SP 1600411-1					2016-01-13	Absent		

	LEAD AND COPPER RULE										
		Units	MCLG	CA-MCL	PHG	Sampled	Result	90th Percentile	# Samples		
Copper		ppm		1.3	.3			0.09	10		
CuPb- Carroll	SP 1606854-1	ppm				2016-06-07	0.10				
CuPb- Carroll	SP 1601591-1	ppm				2016-02-10	0.09				
CuPb- Moore	SP 1606854-2	ppm				2016-06-07	ND				
CuPb- Moore	SP 1601591-2	ppm				2016-02-10	ND				
CuPb- Rooke	SP 1606854-3	ppm				2016-06-07	ND				
CuPb- Rooke	SP 1601591-3	ppm				2016-02-10	ND				
CuPb- Tindall	SP 1606854-4	ppm				2016-06-07	0.07				
CuPb- Tindall	SP 1601591-4	ppm				2016-02-10	0.07				
CuPb- Zimmerman	SP 1606854-5	ppm				2016-06-07	ND				
CuPb- Zimmerman	SP 1601591-5	ppm				2016-02-10	ND				

SAMPLING RESULTS FOR SODIUM AND HARDNESS											
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)		
Sodium		ppm		none	none			55	55 - 55		
Well 02	SP 1415108-1	ppm				2014-12-30	55				
Hardness		ppm		none	none			161	161 - 161		
Well 02	SP 1415108-1	ppm				2014-12-30	161				

	PRIMARY DRINKING WATER STANDARDS (PDWS)												
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)				
Arsenic		ppb		10	0.004			9	9 - 9				
Well 02	SP 1415108-1	ppb				2014-12-30	9						
Fluoride		ppm		2	1			0.3	0.3 - 0.3				
Well 02	SP 1415108-1	ppm				2014-12-30	0.3						
Nitrate as N		ppm		10	10			0.4	0.4 - 0.4				
Well 02	SP 1606858-1	ppm		-		2016-06-15	0.4						

SECONDARY DRINKING WATER STANDARDS (SDWS)									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Chloride		ppm		500	n/a			32	32 - 32
Well 02	SP 1415108-1	ppm				2014-12-30	32		
Specific Conductance		umhos/cm		1600	n/a			539	539 - 539
Well 02	SP 1415108-1	umhos/cm				2014-12-30	539		
Sulfate		ppm		500	n/a			112	112 - 112
Well 02	SP 1415108-1	ppm				2014-12-30	112		
Total Dissolved Solids		ppm		1000	n/a			380	380 - 380
Well 02	SP 1415108-1	ppm				2014-12-30	380		
Turbidity		NTU		5	n/a			0.4	0.4 - 0.4
Well 02	SP 1415108-1	NTU				2014-12-30	0.4		
Zinc		ppm		5	n/a			0.25	0.25 - 0.25
Well 02	SP 1415108-1	ppm				2014-12-30	0.25		

UNREGULATED CONTAMINANTS									
		Units	MCLG	CA-MCL	PHG	Sampled	Result	Avg. Result(a)	Range (b)
Boron		ppm		NS	n/a			0.1	0.1 - 0.1
Well 02	SP 1415108-1	ppm				2014-12-30	0.1		

Casa Dulce Estates CCR Login Linkage - 2016

FGL Code	Lab ID Date_Sampled Method Description		Description	Property			
Bacti-Rpt-ss01	SP 1613614-3	2016-11-11	Coliform	Club House	Repeats		
CuPb-ss01	SP 1601591-1	2016-02-10	Metals, Total	CuPb- Carroll	Copper & Lead Monitoring		
	SP 1606854-1	2016-06-07	Metals, Total	CuPb- Carroll	Copper & Lead Monitoring		
CuPb-ss02	SP 1601591-2	2016-02-10	Metals, Total	CuPb- Moore	Copper & Lead Monitoring		
	SP 1606854-2	2016-06-07	Metals, Total	CuPb- Moore	Copper & Lead Monitoring		
CuPb-ss03	SP 1601591-3	2016-02-10	Metals, Total	CuPb- Rooke	Copper & Lead Monitoring		
	SP 1606854-3	2016-06-07	Metals, Total	CuPb- Rooke	Copper & Lead Monitoring		
CuPb-ss04	SP 1601591-4	2016-02-10	Metals, Total	CuPb- Tindall	Copper & Lead Monitoring		
	SP 1606854-4	2016-06-07	Metals, Total	CuPb- Tindall	Copper & Lead Monitoring		
CuPb-ss05	SP 1601591-5	2016-02-10	Metals, Total	CuPb- Zimmerman	Copper & Lead Monitoring		
	SP 1606854-5	2016-06-07	Metals, Total	CuPb- Zimmerman	Copper & Lead Monitoring		
Bacti-Rout-ss05	SP 1614608-5	2016-12-07	Coliform	Lot 01 - Martin House	Bacteriological Water System Monitoring		
Bacti-Rout-ss02	SP 1613614-4	2016-11-11	Coliform	Lot 02 - Hamilton House	Repeats		
	SP 1614608-2	2016-12-07	Coliform	Lot 02 - Hamilton House	Bacteriological Water System Monitoring		
Bacti-Rout-ss04	SP 1614608-3	2016-12-07	Coliform	Lot 09 - Cannon House	Bacteriological Water System Monitoring		
Bacti-Rout-ss03	SP 1614608-4	2016-12-07	Coliform	Lot 14 -	Bacteriological Water System Monitoring		
WELL 02	SP 1415108-1	2014-12-30	Wet Chemistry	Well 02	CASA DULCE ESTATES		
	SP 1415108-1	2014-12-30	Metals, Total	Well 02	CASA DULCE ESTATES		
	SP 1415108-1	2014-12-30	General Mineral	Well 02	CASA DULCE ESTATES		
	SP 1415108-1	2014-12-30	EPA 524.2	Well 02	CASA DULCE ESTATES		
	SP 1606858-1	2016-06-15	Wet Chemistry	Well 02	Water Quality Monitoring		
Zimmerman House	SP 0708658-1	2007-08-02	EPA 524.2	Zimmerman House	Zimmerman House		
Bacti-Rout-ss01	SP 1600411-1	2016-01-13	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1601583-1	2016-02-10	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1602674-1	2016-03-09	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1604094-1	2016-04-13	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1605275-1	2016-05-11	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1606527-1	2016-06-08	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1607902-1	2016-07-13	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1609214-1	2016-08-10	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1610792-1	2016-09-14	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1612128-1	2016-10-11	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1613524-1	2016-11-09	Coliform	Zimmerman House	Bacteriological Water System Monitoring		
	SP 1613614-1	2016-11-11	Coliform	Zimmerman House	Repeats		
Bacti-R	SP 1614608-1	2016-12-07	Coliform	Zimmerman House	Bacteriological Water System Monitoring		