2016 CONSUMER CONFIDENCE REPORT

conserve

CITY OF SOLVANG 1644 OAK STREET SOLVANG, CA 93463 (805) 688-5575 http://www.cityofsolvang.com/ccr2016

2016 Consumer Confidence Report

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2016 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Type of water source(s) in use: Ground Water (Solvang Wells & ID#1 Wells) & Surface Water (CCWA) Name & general location of source(s): Wells 3 & 7A River Wells; Well 4 & HCA South Well-Upland Wells; SantaYnez River Water Conservation District, Improvement District No. 1 (ID#1) & Central Coast Water Authority (CCWA) Source Assessments for the City's wells were completed September Drinking Water Source Assessment information: 2002. The new HCA South Well source assessment was completed August 2016. Time and place of regularly scheduled board meetings for public participation: Second & Fourth Monday of each Month at 1644 Oak Street, Solvang, CA @ 6:30 P.M.

For more information, contact: Chris Whitford

Water System Name:

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

CITY OF SOLVANG

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Phone: (805) 688-5575

Report Date: JUNE 2017

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

ND: not detectable at testing limit

ppm: parts per million or milligrams per liter (mg/L)

ppb: parts per billion or micrograms per liter (μ g/L)

ppt: parts per trillion or nanograms per liter (ng/L)

ppq: parts per quadrillion or picogram per liter (pg/L)

pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

City of Solvang 2016 Water Quality Table

TABLE 1 –	SAMPLING	RESULT	S SHOWI	NG THE DE	TECTION	OF COLIE	FORM BACTERIA
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections		onths in ation	МС	CL	MCLG	Typical Source of Bacteria
Total Coliform Bacteria	0	0		More than 1 month with a		0	Naturally present in the environment
Fecal Coliform or <i>E. coli</i>	0	()	A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i>		0	Human and animal fecal waste
TABLE 2	- SAMPLIN	IG RESUL	TS SHOW	VING THE I	DETECTIO	ON OF LEA	D AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Sample Date	No. of samples collected	90 th percentile level detected	No. sites exceeding AL	AL	PHG	Typical Source of Contaminant
Lead (ppb)	8/14	20	ND	0	15	0.2	Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	8/14	20	0.3	1	1.3	0.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
	TABLE 3	- SAMPL	ING RESU	JLTS FOR S	SODIUM A	ND HARD	NESS
Chemical or Constituent (and reporting units)	Sample Date	Level Detecte	_	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant

Sodium (ppm)	3/11/15	62.2	54-73	none	none	Salt present in the water and is generally naturally occurring
Hardness (ppm)	3/11/15	586	477-680	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring
Any violation of an MCL or A	AL is asteriske	d. Additional infor	mation regarding	the violation i	is provided late	
						WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Source of Contaminant
Fluoride (ppm)	3/11/15	.18	0.1-0.2	2	1	Erosion of Natural deposits; water additive which promotes strong teeth
Nitrate (ppm) (as NO3)	3/11/15	6.7	1.3-16.9	45	45	Runoff & leaching from fertilizer use; sewage; erosion of natural deposits
Nitrate and Nitrite (as N) (ppm)	3/11/15	1.7	0.3-3.8	10	10	Runoff & leaching from fertilizer use; sewage; erosion of natural deposits
Hexavalent Chromium (ppb)	3/11/15	.25	0-1.1	10	0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Tetrachloroethylene (PCE)* (ppb)	7/27/16	0.175	07	5	N/A	Leaching from PVC pipes: discharge from factories, dry cleaners and auto shops (metal degreasers)
Gross Alpha Activity (pCi/L)	2013- 2016	7.61	4.26-13.6	15	N/A	Erosion of natural deposits
Uranium (pCi/L)	2013- 2016	5.27	3.11-9.89	20	0.5	Erosion of natural deposits
Trihalomethane (TTHM) (ppb)	1/16- 10/16	26.6	6.3-42.9	80	N/A	Byproduct of drinking water chlorination
Haloacetic Acid (HA A5) (ppb)	1/16- 10/16	6.9	2-11	60	N/A	Byproduct of drinking water disinfection.
Selenium (ppb)	3/11/15	11.25	4-16	50	50	Erosion of natural deposits; discharge chemical manufacturers and runoff from livestock lot.
TABLE 5 – DETH	ECTION OF	CONTAMINA	NTS WITH A <u>S</u>	ECONDAR	<u>Y</u> DRINKIN	G WATER STANDARD
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant
Chloride (ppm)	3/11/15	90	53-145	500	N/A	Runoff/leaching from natural deposits; seawater influence
Odor (units)	3/11/15	<1	<1	3 units	N/A	Natural occurring materials
Specific conductance (Umhos/cm)	3/11/15	1418	1260-1600	1600	N/A	Substance that forms ions when in water; seawater influence
Sulfate (ppm)	3/11/15	273.8	189-300	500	N/A	Runoff/leaching from natural deposits; industrial wastes

Total Dissolved Solids (ppm)	3/11/15	920	840-1040	1000	N/A	Runoff/leaching from natural deposits
	TABLE	6 – DETECTION	N OF UNREGUL	ATED CO	NTAMINA	NTS
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	Notifica	tion Level	Health Effects Language
Boron (ppb)	3/11/15	200	100-300	1	000	Some men who drink water containing boron in excess of the action level over many years may experience reproductive effects based on studies in dogs.
Vanadium (ppb)	3/11/15	6	<2.0-9.0		50	The babies of some pregnant women who drink water containing vanadium in excess of the action level may have an increased risk of developmental effects, based on studies in laboratory animals.

*Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Solvang is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

2016 Annual Water Quality Report - Santa Ynez River Water Conservation District, ID#1

						Drinking Wa	ater Source	
		State	PHG	State	Range	State	Ground	
Parameter	Units	MCL	(MCLG)	DLR	Average	Water	Water	Major Sources in Drinking Water
PRIMARY STANDA	ARDSMa	andatory H	ealth-Rel	ated Sta	ndards			
CLARITY								
Combined Filter	NTU	TT=<1 N	ITU every 4	hours	Range	0.03 - 0.11	NA	Soil runoff
Effluent Turbiditv ^a	NIU	TT=95% of	f samples <0).3 NTU	%	100%	NA	
NORGANIC CHEMICAL	e							
					Range	ND - 82	ND	Residue from water treatment process;
Aluminum ^b	ppb	1000 (b)	600	50	Average	60	ND	Erosion of natural deposits
	un an la	10	0.00	1.0	Range	ND	0.2 - 16	Discharges from industrial manufacturers; eros
Chromium +6 ^{c,d}	ppb	10	0.02	1.0	Average	ND	2.6	of natural deposits
Chromium (Total Cr)	ppb	50	(100)	10	Range	ND	ND - 10	Erosion of natural deposits; steel,
	ppp	50	(100)	10	Average	ND	1.9	pulp mills, and chrome plating wastes
luoride	ppm	2	1	0.1	Range	ND		Erosion of natural deposits;
	r r			-	Average	ND	0.26	water additive for tooth health
Nitrate (as Nitrogen)	nnm	10	10	0.4	Range	0.41	ND - 3.4	Runoff and leaching from fertilizer use; leachin from septic tanks and sewage; erosion of nature
Nillale (as NillOgen)	ppm	10	10	0.4	Average	0.41	0.7	deposits
								depeerde
RADIONUCLIDES								-
Gross Alpha ^e	pCi/L	15	NA	3	Range	ND	ND - 13	Erosion of natural deposits
	p 0 =			-	Average	ND	4.7	
Uranium ^f	pCi/L	20	0.5	4	Range	NC	2.0 - 5.7	Erosion of natural deposits
Jianum								
		-	0.5	1	Average	NC	4.4	
SECONDARY STA	NDARDS				Average	NC	4.4	
SECONDARY STA	NDARDS							·
	NDARDS				Range	41 - 138	24 - 44	Runoff/leaching from natural deposits;
SECONDARY STA		Aesthetic	: Standar	ds	Range Average	41 - 138 97	24 - 44 35	·
		Aesthetic	: Standar	ds	Range Average Range	41 - 138 97 ND	24 - 44 35 ND - 23	Runoff/leaching from natural deposits;
Chloride Color (ACU)	ppm Units	Aesthetic 500 15	NA NA	ds 	Range Average Range Average	41 - 138 97 ND ND	24 - 44 35 ND - 23 2.3	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials
Chloride Color (ACU)	ppm	500	Standar	ds 	Range Average Range Average Range	41 - 138 97 ND	24 - 44 35 ND - 23	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in
Chloride Color (ACU) Corrosivity	ppm Units SI	500 5500 15 non- corrosive	NA NA NA	ds 	Range Average Range Average	41 - 138 97 ND ND non-	24 - 44 35 ND - 23 2.3 non-	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors
Chloride Color (ACU) Corrosivity	ppm Units	500 550 15 non-	NA NA	ds 	Range Average Range Average Range Average	41 - 138 97 ND ND non- corrosive	24 - 44 35 ND - 23 2.3 non- corrosive	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in
Chloride Color (ACU) Corrosivity ron	ppm Units SI ppb	Aesthetic 500 15 non- corrosive 300	NA NA NA NA	ds 100	Range Average Range Average Range Average Range	41 - 138 97 ND ND non- corrosive ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes
Chloride Color (ACU) Corrosivity ron MBAS	ppm Units SI	500 5500 15 non- corrosive	NA NA NA	ds 	Range Average Range Average Range Average Range Average	41 - 138 97 ND ND non- corrosive ND ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits;
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents)	ppm Units SI ppb ppb	Aesthetic 500 15 non- corrosive 300	NA NA NA NA	ds 100	Range Average Range Average Range Average Range Average Range Range	41 - 138 97 ND ND corrosive ND ND ND ND ND ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges
Chloride	ppm Units SI ppb	Aesthetic 500 15 non- corrosive 300 500	NA NA NA NA NA	ds 100 	Range Average Range Average Range Average Range Average Range Average Range Average	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents)	ppm Units SI ppb ppb	Aesthetic 500 15 non- corrosive 300 500	NA NA NA NA NA	ds 100 	Range Average Range Average Range Average Range Average Range Average Range Range Range	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese Odor Threshold	ppm Units SI ppb ppb ppb Units	Aesthetic 500 15 non- corrosive 300 500 500	Standar NA NA NA NA NA	ds 100 20	Range Average Range Average Range Average Range Average Range Average Range Average Range Average	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND ND ND ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Naturally-occurring organic materials
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese Odor Threshold Specific	<pre>ppm Units SI ppb ppb ppb Units units units units</pre>	Aesthetic 500 15 non- corrosive 300 500 500	Standar NA NA NA NA NA	ds 100 20	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND ND ND ND ND	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Naturally-occurring organic materials Substances that form ions
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese Odor Threshold Specific Conductance	ppm Units SI ppb ppb ppb Units	Aesthetic 500 15 non- corrosive 300 500 500 50 3 1600	Standar NA NA NA NA NA NA NA	ds 100 20 1 	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND ND ND 374 - 757 609	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence
Chloride Color (ACU) Corrosivity ron MBAS (Foaming Agents) Manganese Odor Threshold Specific Conductance	<pre>ppm Units SI ppb ppb ppb Units units units units</pre>	Aesthetic 500 15 non- corrosive 300 500 500 3	Standar NA NA NA NA NA NA	ds 100 20 1	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Range Range Range	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND 374 - 757 609 100	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928 53 - 290	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits;
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese	ppm Units SI ppb ppb Units units ppb ppb ppb units ppb ppb ppb units units units units units units	Aesthetic 500 15 non- corrosive 300 500 500 3 1600 500	Standar NA NA NA NA NA NA NA NA	ds 100 20 1 0.5	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average	41 - 138 97 ND ND ON ND ND ND ND ND ND ND ND ND ND 374 - 757 609 100	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese Odor Threshold Specific Conductance Sulfate	ppm Units SI ppb ppb Units units	Aesthetic 500 15 non- corrosive 300 500 500 50 3 1600	Standar NA NA NA NA NA NA NA	ds 100 20 1 	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Range Range Range	41 - 138 97 ND ND corrosive ND ND ND ND ND ND ND ND ND 374 - 757 609 100	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928 53 - 290 193	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits;
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese Odor Threshold Specific Conductance Sulfate Fotal Dissolved	ppm Units SI ppb ppb Units Units umho/ cm ppm ppm	Aesthetic 500 15 non- corrosive 300 500 500 3 1600 500 1000	Standar NA NA NA NA NA NA NA NA NA	ds 100 20 1 0.5 	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range	41 - 138 97 ND ND ON ND ND ND ND ND ND ND ND ND ND 374 - 757 609 100 100 194 - 442	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928 53 - 290 193 470 - 770	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits;
Chloride Color (ACU) Corrosivity ron MBAS Foaming Agents) Manganese Odor Threshold Specific Conductance Sulfate Fotal Dissolved Solids (TDS)	ppm Units SI ppb ppb Units units ppb ppb ppb units ppb ppb ppb units units units units units units	Aesthetic 500 15 non- corrosive 300 500 500 3 1600 500	Standar NA NA NA NA NA NA NA NA	ds 100 20 1 0.5	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average	41 - 138 97 ND ND ND ND ND ND ND ND ND ND 374 - 757 609 100 100 194 - 442 346	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928 53 - 290 193 470 - 770 620	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes
Chloride Color (ACU) Corrosivity ron //BAS Foaming Agents) //anganese Odor Threshold Specific Conductance Sulfate Total Dissolved Solids (TDS) .ab Turbidity (ID#1)	ppm Units SI ppb ppb Units Units umho/ cm ppm ppm	Aesthetic 500 15 non- corrosive 300 500 500 3 1600 500 1000	Standar NA NA NA NA NA NA NA NA NA	ds 100 20 1 0.5 	Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Average Range Range Range Range Range	41 - 138 97 ND ND ND ND ND ND ND ND ND ND 374 - 757 609 100 100 100 194 - 442 346 0.03 - 0.13	24 - 44 35 ND - 23 2.3 non- corrosive ND - 630 96 ND - 13 0.01 ND - 24 2.4 1 - 4 1.7 780 - 1100 928 53 - 290 193 470 - 770 620 ND - 10.7	Runoff/leaching from natural deposits; seawater influence Naturally-occurring organic materials Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors Leaching from natural deposits; industrial wastes Municipal and industrial waste discharges Leaching from natural deposits Leaching from natural deposits Naturally-occurring organic materials Substances that form ions when in water; seawater influence Runoff/leaching from natural deposits; industrial wastes Runoff/leaching from natural deposits;

Alkalinity (Total) as	nom	NA	NA		Range	42 - 84	Π	230 - 290	Runoff/leaching from natural deposits;
CaCO ₃ equivalents	ppm	NA	NA		Average	66		269	seawater influence
Boron	ppb	NA	NL=1,000	100	Range	NC		120 - 380	Runoff/leaching from natural deposits;
	ppp		NL=1,000	100	Average	NC		230	wastewater, and fertilizers/pesticides.
Calcium	ppm	NA	NA		Range	30 - 82		45 - 110	Runoff/leaching from natural deposits;
Calcium	ppm	NA			Average	53		79	seawater influence
Geosmin	ng/L	NA	NA	NA	Range	ND - 2		NC	An organic compound mainly produced by
Ocosinin	iig/∟	NA		IN/A	Average	1		NC	bacterial growth in surface water
Hardness (Total) as	ppm	NA	NA		Range	64 - 162		300 - 520	Leaching from natural deposits
CaCO₃	ppm			-	Average	115		414	
Heterotrophic Plate			NIA		Range	0 - 2		NA	
Count ^g	CFU/mL	TT	NA		Average	0.4		NA	Naturally present in the environment
Magnosium	nnm	NA	NA		Range	17	1 [45 - 60	Runoff/leaching from natural deposits;
Magnesium	ppm	ΝA	IN/A		Average	17		53	seawater influence

2016 Annual Water Quality Report - Santa Ynez River Water Conservation District, ID#1

						Drinking Wa	ter Source	
Parameter	Units	State MCL	PHG (MCLG)	State DLR	Range Average	State Water	Ground Water	Major Sources in Drinking Water
2-Methylisoborneol (MIB)	ng/L	NA	NA	NA	Range Average	ND - 9 4	NC NC	An organic compound mainly produced by blue-green algae (cyanobacteria)
рН	pH Units	NA	NA		Range Average	8.0 - 8.5 8.3	7.4 - 7.7 7.6	Runoff/leaching from natural deposits; seawater influence
Potassium	ppm	NA	NA		Range Average	4.0 4.0	2.0 - 2.6 2.4	Runoff/leaching from natural deposits; seawater influence
Sodium	ppm	NA	NA		Range Average	87 87	39 - 54 47	Runoff/leaching from natural deposits; seawater influence
Total Organic Carbon (TOC) ^h	ppm	TT	NA	0.30	Range Average	1.5 - 3.5 2.3	NA NA	Various natural and manmade sources.
Vanadium	ppb	NA	NL=50	3	Range Average	NC NC	ND - 19 9	Leaching from natural deposits; industrial wastes

Distribution System Water Quality

ORGANIC CHEMICALS

ORGANIO ONEMICAEO								
					Range	31 - 60	1.1 - 35.2	
Total Trihalomethanes ⁱ	ppb	80	NA	NA	Highest	61	40.7	By-product of drinking water chlorination
					RAA	61	42.7	
					Range	4.1 - 14	ND - 8.4	
Haloacetic Acids ^j	ppb	60	NA	1,2 ^j	Highest	11.0	44.4	By-product of drinking water chlorination
					RAA	11.8	11.1	
DISINFECTION								
Total chlorine residual		MRDL =	MRDLG =		Range	1.9 - 2.7		Measurement of the disinfectant
CCWA Distribution	ppm	4.0	4.0		Average	2.3		used in the production of drinking water
Free/total chlorine residual		MRDL =	MRDLG =		Range		0.4 - 2.3	Measurement of the disinfectant
ID#1 Distribution	ppm	4.0	4.0		Average		1.61	used in the production of drinking water

Abbrevations and Notes

Footnotes:

- (a) Turbidity (NTU) is a is a good indicator of the effectiveness of a filtration system. Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 200 ppb.
- (c) Although an individual sample may exceed the MCL, compliance is based on an RAA.
- (d) ID#1 has a DDW-approved Compliance Plan in place to reduce naturally-occurring Cr6 in water produced from local supply wells.
- (e) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average and range from most recent sampling of all supply wells.
- (f) Uranium monitoring is dependent on measured gross alpha particle activity.
- (g) Pour plate technique -- monthly averages.
- (h) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (i) Compliance based on the RAA of distribution system samples. Values reported are the range of all 2016 sample results and highest running annual average.
- (j) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

Abbreviations

ACU = Apparent Color Units CCWA = Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter ID#1 = Santa Ynez River Water Conservation District, Improvement District No.1

- NA = Not Applicable
- NC = Not Collected
- ng/L = nanograms per liter
- NL = Notification Level
- NTU = Nephelometric Turbidity Units
- pCi/L = PicoCuries per liter
- ppb = parts per billion, or micrograms per liter (µg/L)
- ppm = parts per million, or milligrams per liter (mg/L)
- RAA = running annual average
- SI = saturation index
- µmho/cm = micromhos per centimeter

Exceedance of Regulatory Standards

The summary table of analytical results confirms that water served by ID#1 met all primary drinking water standards during the 2016 reporting period. Secondary standards for iron, color, and turbidity were exceeded in samples from Wells 10 and Well 22 (iron only). Additionally, the odor threshold was exceeded in one sample from Well 19. These secondary standards are designed to protect consumers against unpleasant aesthetic affects such as color, taste, odor, or the staining of plumbing fixtures or clothing. These wells, from one of the District's River well fields, were sampled in March 2016 following an extended period of non-use and only minimally flushed to waste before sampling to avoid excessive water loss during the drought. Sampling from the other four nearby river wells and follow-up sampling from these wells yielded low to non-detect levels for these constituents, indicating that the high results were not representative of the water produced. These high results were likely due to the turbulence and inadequate well flushing at startup. Additionally, concentrations delivered to District customers would be less due to blending of multiple sources and dilution within the distribution system.

CENTRAL COAST WATER AUTHORITY POLONIO PASS WATER TREATMENT PLANT WATER QUALITY TABLE

COVERING THE REPORTING PERIOD OF JANUARY-DECEMBER 2016

Please see last page for key to abbreviations.

						TREATED	SOURCE	
		State	PHG	State	Range		STATE	
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water

PRIMARY STANDARDS--Mandatory Health-Related Standards

CLARITY (a)

Combined Filter	NTU	TT=<1 NTU every 4 hours	Range	0.03 - 0.11	NA	Soil runoff
Effluent Turbidity (a)	NIO	TT=95% of samples <0.3 NTU	%	100%	NA	

INORGANIC CHEMICALS

Aluminum	ppm	1 (b)	0.6	0.05	Range	ND - 0.082	ND - 0.25	Residue from water treatment process;
, aaninam	PPIII	1 (6)	0.0	0.00	Average	0.060	0.110	erosion of natural deposits
Arsenic, Total	dqq	10	0.004	2	Range	ND	2.0	Erosion of natural deposits; runoff from orchards;
Arsenic, Totai	ppp	10	0.004	2	Average	ND	2.0	glass and electronics production wastes
Fluoride	ppm	2.0	1	0.1	Range	ND	0.12	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer
Thionae	ppin	2.0	•	0.1	Average	ND	0.12	and aluminum factories
Nitrate as Nitrogen	ppm	10 (h)	10	0.4	Range	0.41	0.43	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural
Nillate as Nillogen	ppin	10 (1)	10	0.4	Average	0.41	0.43	deposits

RADIONUCLIDES

Gross Beta Particle	pCi/L	50	(0)	4	Range	ND	5.7	Decay of natural and man-made deposits
GIUSS Dela Particle	poi/L	50	(0)	-	Average	ND	5.7	Decay of hatural and man-made deposits

DISTRIBUTION SYSTEM MONITORING

Total Chlorine Residual	ppm	MRDL =	MRDLG =	NA	Range	1.9 - 2.7	NA	Measurement of the disinfectant
Total Chionne Residual	ppm	4.0	4.0	IN/A	Average	2.3	NA	used in the production of drinking water
Total Coliform Bacteria		5.0% of			Range	0 - 2.5%	NA	
(C)		monthly	(0)		Average	0.4%	NA	Naturally present in the environment
(0)		samples			Highest	2.5%	NA	
Total Trihalomethanes					Range	31 - 60	NA	
(d)	ppb	80	NA	NA	Average	48	NA	By-product of drinking water chlorination
(0)					Highest LRAA	61.0	NA	
					Range	4.1 - 14	NA	
Haloacetic Acids (d)	ppb	60	NA	(e)	Average	8.1	NA	By-product of drinking water chlorination
					Highest LRAA	11.8	NA	

SECONDARY STANDARDS--Aesthetic Standards

Chloride	ppm	500	NA	NA	Range	41 - 138	11 - 136	Runoff/leaching from natural deposits;
					Average	97	94	seawater influence
Color	ACU	15	NA	NA	Range	ND	25	Naturally occurring organic materials
					Average	ND	25	
Corrosivity	None	non-	NA	NA	Range	non-corrosive	non-corrosive	Balance of hydrogen, carbon, & oxygen in water, affected by temperature & other factors
(Aggresivity Index)	NONE	corrosive			Average	non-corrosive	non-corrosive	
Odor Threshold	TON	3	NA	1	Range	ND	ND - 2	Naturally occurring organic materials
					Average	ND	1.1	
Specific	uS/cm	1600	NA	NA	Range	374 - 757	326 - 700	Substances that form ions
Conductance					Average	609	544	when in water; seawater influence
Sulfate	ppm	500	NA	NA	Range	100	71	Runoff/leaching from natural deposits;
					Average	100	71	industrial wastes
Total Dissolved	1000	NA	NLA	Range	194 - 442	170 - 392		
Solids (TDS)	ppm '	1000	NА	NA	Average	346	312	Runoff/leaching from natural deposits;
Turbidity (Monthly) <i>(a)</i>	NTU	5	NA	NA	Range	0.03 - 0.13	0.34 - 44	Soil runoff
					Average	0.06	2.80	

			TREATED	SOURCE					
		State	PHG	State	Range		STATE		
Parameter	Units	MCL	(MCLG)	DLR	Average	CCWA	WATER	Major Sources in Drinking Water	
ADDITIONAL PARAMETERS (Unregulated)									

Alkalinity (Total) as	ppm	NA	NA	NA	Range	42 - 84	46 - 98	Runoff/leaching from natural deposits;
CaCO ₃ equivalents	ppm				Average	66	74	seawater influence
Calcium	ppm	NA	NA	NA	Range	30 - 82	30 - 74	Runoff/leaching from natural deposits;
	ppm				Average	53	53	seawater influence
Geosmin	ng/L	NA	NA	NA	Range	ND - 2	ND - 30	
					Average	1	3	
Hardness (Total) as	ppm	NA	NA	NA	Range	64 - 162	62 -166	Leaching from natural deposits
CaCO ₃	ppin	IN-A		INA.	Average	115	115	Leaching norm natural deposits
Heterotrophic Plate	CFU/mL	TT	NA	NA	Range	0 - 2	NA	Naturally present in the environment
Count (f)	CF0/IIIL	11	INA	NA	Average	0.4	NA	Naturally present in the environment
Magnaaium		NA	NA	NA	Range	17	16	Runoff/leaching from natural deposits;
Magnesium	ppm				Average	17	16	seawater influence
Manganese, Total	ppb	NA	NA	NA	Range	ND	15	Runoff/leaching from natural deposits;
					Average	ND	15	seawater influence
2-Methylisoborneol	ng/L	NA	NA	NA	Range	ND - 9	ND - 11	
					Average	4	4	
рН	pH Units	NA	NA	NA	Range	8.0 - 8.5	7.6 - 9.4	Runoff/leaching from natural deposits;
					Average	8.3	8.6	seawater influence
Potassium	ppm	NA	NA	NA	Range	4.0	3.9	Runoff/leaching from natural deposits;
					Average	4.0	3.9	seawater influence
Sodium	ppm	NA	NA	NA	Range	87	75.	Runoff/leaching from natural deposits;
					Average	87	75	seawater influence
Total Organic Carbon	ppm	TT	TT NA	0.30	Range	1.5 - 3.5	2.8 - 6.5	Various natural and man made sources
(TOC) <i>(g)</i>					Average	2.3	4.0	

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system.
 - Monthly turbidity values are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 0.2 ppm.

(c) Total coliform MCLs: Systems that collect ≥40 samples/month no more than 5.0% of the monthly samples may be Total Coliform positive. Systems that collect <40 samples per month no more than 1 positive sample per month may be Total Coliform positive. Fecal coliform/E. coli MCLs: The occurrence of 2 consecutive Total Coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute MCL violation.

- (d) Compliance based on the running quarterly annual average of distribution system samples.
- (e) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.
- (f) Pour plate technique
- (g) TOCs are taken at the treatment plant's combined filter effluent.
- (h) State MCL is 45 mg/L as NO_3 , which equals 10 mg/L as N.

Abbreviations

ACU = Apparent Color Units CCWA = Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter DLR = Detection Level for purposes of Reporting MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MRDL = Maximum Residual Disinfectant Level MRDLG = Maximum Residual Disinfectant Level Goal NA = Not Applicable NTU = Nephelometric Turbidity Units pCi/L = PicoCuries per liter PHG = Public Health Goal ppb = parts per billion, or micrograms per liter (µg/L) ppm = parts per million, or milligrams per liter (mg/L) TON = Threshold Odor Number TT = Treatment Technique LRAA = Locational Running Annual Average

City of Solvang Conservation Efforts

The City of Solvang has downgraded to Stage 1 Drought Regulations. For a full list of the regulations, please see: www.cityofsolvang.com

Conservation Programs

 \Box Low Flow Toilet Rebates

□ Landscape Rebate For more information on these programs, please contact the City of Solvang at 805-688-5575

Water Wise Facts

□ 1 Unit of water on your water bill = One Hundred Cubic Feet (1 HCF)

- □ 1 Unit = 1 HCF = 100 Cubic Feet = 748 gallons
- □ The State of California Department of Water Resources has determined the minimum quantity of water for health & safety purposes is 50/gallons per person per day.
- \Box For a family of four, 50/gallons per person per day = 8.3 Units/month.

Additional Resources

Waterwise Santa Barbara, www.waterwisesb.org

ABBREVIATIONS AND NOTES

Footnotes:

- (a) Turbidity (NTU) is a measure of the cloudiness of the water and is a good indicator of the effectiveness of a filtration system. Monthly turbidity values for State Water are listed in the Secondary Standards section.
- (b) Aluminum has a Secondary MCL of 200 ppb.
- (c) Gross alpha particle activity monitoring required every nine years for State Water; more frequent monitoring is required for some groundwater based on detected levels. Reported average represents highest running source average.
- (d) Uranium monitoring is dependent on measured gross alpha particle activity.
- (e) Pour plate technique -- monthly averages.
- (f) TOCs are taken at the State Water treatment plant's combined filter effluent.
- (g) Total coliform MCLs: No more than 5.0% (State Water) or 1 sample (ID#1) of the monthly samples may be Total Coliform positive. All required follow-up and confirmation samples collected in response to each of the positive Total Coliform samples were absent for Total Coliform.
- (h) Compliance based on the running quarterly annual average of distribution system samples. Values reported are range of all sample results and highest running annual average.
- (j) Monochloroacetic Acid (MCAA) has a DLR of 2.0 ug/L while the other four Haloacetic Acids have DLR's of 1.0 ug/L.

Abbreviations

- ACU = Apparent Color Units
- CCWA = Central Coast Water Authority
- CFU/ml = Colony Forming Units per milliliter
- ID#1 = Santa Ynez River Water Conservation District, Improvement District No.1
- NA = Not Applicable
- NC = Not Collected
- NL = Notification Level
- NTU = Nephelometric Turbidity Units
- pCi/L = PicoCuries per liter
- ppb = parts per billion, or micrograms per liter (µg/L)
- ppm = parts per million, or milligrams per liter (mg/L)
- SI = saturation index
- μ mho/cm = micromhos per centimeter, (unit of specific conductance of water)

