ANNUAL WATER OUALITY REPORTING YEAR 2019

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo o hable con alguien que lo entienda bien.

PWS ID#: 1310006

Our Mission Continues

We are once again pleased to present our annual water quality report covering all testing performed between January 1 and December 31, 2019. Over the years, we have dedicated ourselves to producing drinking water that meets all state and federal standards. We

continually strive to adopt new methods for delivering the best-quality drinking water to you. As new challenges to drinking water safety emerge, we remain vigilant in meeting the goals of source water protection, water conservation, and community education while continuing to serve the needs of all our water users.

Please remember that we are always available should you ever have any questions or concerns about your water.

City Council Meetings

You are invited to participate in our City Council Meetings. We meet the 1st and 3rd Wednesdays of each month beginning at 7 p.m. at the Imperial Council Chambers, 200 West 9th Street, Imperial, CA 92251.

Important Health Information

Come people may be more vulnerable to Contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention)

lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http:// water.epa.gov/drink/ hotline.

Where Does My Water Come From?

The City of Imperial receives its water supply from and the facilities of the Imperial Irrigation District. Our treatment process for the surface water consists of "complete" treatment, including sedimentation, coagulation, flocculation, filtration, and disinfection. The City currently provides an average of 2.6 million gallons per day and an average of 961 million gallons of water of Imperial meets all applicable State Water Resources Control Board, Division of Drinking Water, and U.S. Environmental Protection Agency domestic water-quality standards. The raw water we receive from the All American Canal exceeded standards for aluminum and iron. Water quality data for the reporting period ending December 31, 2019, is found in this report. Recent 2019 water quality information is available for review upon request or on our website www.cityofimperial.org.

Lead in Home Plumbing

f present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. (If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.) If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at (800) 426-4791 or at www.epa.gov/ safewater/lead.

For more information about this report, for any questions relating to your drinking water, or to voice your concerns about your drinking water, please call Robert Emmett, Chief Water Plant Operator, at (760) 355-2155.

Substances That Could Be in Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided

by public water systems. The U.S. Food and Drug Administration regulations and California law also establish limits for contaminants in bottled water that provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife;

Inorganic Contaminants, such as salts and metals, that can be naturally occurring or can result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, agricultural applications, and septic systems;

Radioactive Contaminants, that can be naturally occurring or can be the result of oil and gas production and mining activities.

More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Treatment Process

11_

The treatment process consists of a series of steps. First, raw water is drawn from our water source and sent to several ponds hold water for the water treatment plant. The water is then pumped to a settling basin that has flocculator mixers, where a polymer and a coagulant are added. The addition of these substances causes small particles to adhere to one another, called "floc," making them heavy enough to settle into a basin from which sediment is removed. At this point, the water is filtered

> through layers of fine coal and silicate sand. As smaller, suspended particles are removed, turbidity disappears and clear water emerges. Chlorine is added after filtration to disinfect the water to prevent the development of bacteria. We carefully monitor the amount of

chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste. Next, a portion of the water is pumped into four Granular Activated Carbon (GAC) columns to reduce Total Organic Carbon (TOC), which is one of the precursors of Total Trihalomethane (TTHM) formation in the water. Finally, the combined water is sent to the two million gallon finished-water tank. From there, the water is pumped into the distribution system for your home or business.

Testing for Cryptosporidium

onitoring of our Source Water indicates the presence of *Cryptosporidium* at levels of 0/None.

Cryptosporidium is a microbial pathogen found in surface water throughout the U.S. Although filtration removes Cryptosporidium, the most commonly used filtration methods cannot guarantee 100 percent removal. Current test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Ingestion of Cryptosporidium may cause cryptosporidiosis, an abdominal infection. Symptoms of infection include nausea, diarrhea, and abdominal cramps. Most healthy individuals can overcome the disease within a few weeks. However, immunocompromised people, infants and

small children, and the elderly are at greater risk of developing lifethreatening illness. We encourage immunocompromised individuals to consult their doctors regarding appropriate precautions to take to avoid infection. Cryptosporidium must be ingested to cause disease, and it may be spread through means other than drinking water.

-11

We remain vigilant in delivering the best-quality drinking water

Test Results

Our water is monitored for many different kinds of substances on a very strict sampling schedule. Also, the water we deliver must meet specific health standards. Here, we show only those substances that were detected in our water. (A complete list of all our analytical results is available upon request.) Remember that detecting a substance does not mean the water is unsafe to drink; our goal is to keep all detects below their respective maximum levels.

The state recommends monitoring for certain substances less often than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

We participated in the 4th stage of the U.S. EPA's Unregulated Contaminant Monitoring Rule (UCMR4) program by performing additional tests on our drinking water. UCMR4 sampling benefits the environment and public health by providing the EPA with data on the occurrence of contaminants suspected to be in drinking water, in order to determine if the EPA needs to introduce new regulatory standards to improve drinking water quality. Unregulated contaminant monitoring data are available to the public, so please feel free to contact us if you are interested in obtaining that information. If you would like more information on the U.S. EPA's Unregulated Contaminant Monitoring Rule, please call the Safe Drinking Water Hotline at (800) 426-4791.

REGULATED SUBSTANCES

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	PHG (MCLG) [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Barium (ppm)	2019	1	2	0.11	NA	No	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
Fluoride (ppm)	2019	2.0	1	0.38	NA	No	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
HAA5 (ppb)	2019	60	NA	16	5.7– 34.9	No	By-product of drinking water disinfection
Nitrate [as nitrogen] (ppm)	2018	10	10	0.41	NA	No	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
TTHMs [Total Trihalomethanes] ¹	2019	80	NA	1.0	NA	No	By-product of drinking water disinfection
Turbidity	2019	TT = 1 NTU	NA	0.19 NTU	NA	No	Soil runoff
		TT = 95% of samples ≤0.3 NTU		100%	NA		

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	PHG	AMOUNT DETECTED (90TH %ILE)	SITES ABOVE AL/ TOTAL SITES	NUMBER OF SCHOOLS SAMPLED	VIOLATION	TYPICAL SOURCE	
Copper (ppm)	2019	1.3	0.3	<.001	0	0	No	Corrosion of household plumbing systems; Erosion of natural deposits	
Lead (ppb)	2019	15	0.2	.0002	0	0	No	Corrosion of household plumbing systems; Erosion of natural deposits	
SECONDARY SUBSTANCES									

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	PHG (MCLG)	AMOUNT DETECTED	RANGE LOW-HIGH	EXCEEDANCE	TYPICAL SOURCE
Aluminum (ppb)	2019	200	NS	280	NA	No	Erosion of natural deposits; residual from some surface water treatment processes
Color (Units)	2019	15	NS	20	NA	No	Naturally occurring organic materials
Iron (ppb)	2019	300	NS	320	NA	No	Leaching from natural deposits; industrial wastes
Manganese (ppb)	2019	50	NS	22	NA	No	Leaching from natural deposits
Specific Conductance (µS/cm)	2018	1,600	NS	1,100	NA	No	Substances that form ions when in water; seawater influence
Sulfate (ppm)	2018	500	NS	280	NA	No	Runoff/leaching from natural deposits; industrial wastes
Total Dissolved Solids (ppm)	2019	1,000	NS	710	NA	No	Runoff/leaching from natural deposits

UNREGULATED SUBSTANCES² SUBSTANCE YEAR AMOUNT RANGE TYPICAL SOURCE (UNIT OF MEASURE) SAMPLED DETECTED LOW-HIGH 2019 170 Leaching from natural deposits Boron (ppb) NA Hardness, Total [as 2019 340 NA Leaching from natural deposits CaCO3] (ppm) Sodium (ppm) 2019 NA Leaching from natural deposits 130 Vanadium (ppb) 2019 ND Leaching from natural deposits NA

OTHER SUBSTANCES²

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Alkalinity, Total (ppm)	2019	160	NA	Leaching from natural deposits
Bicarbonate (ppm)	2019	190	NA	Leaching from natural deposits
Calcium (ppm)	2019	89	NA	Leaching from natural deposits
Magnesium (ppm)	2019	29	NA	Leaching from natural deposits
pH (Units)	2019	8.4	NA	Leaching from natural deposits
Potassium (ppm)	2019	ND	NA	Leaching from natural deposits
Total Anions (ppm)	2019	12.1	NA	Naturally occurring
Total Cations (ppm)	2019	12.5	NA	Naturally occurring

¹ Some people who drink water containing trihalomethanes in excess of the MCL over many years may experience problems with their livers, kidneys, or central nervous systems, and may have an increased risk of getting cancer.
² Unregulated contaminant monitoring helps U.S. EPA and the State Water Resources Control Board to determine where certain contaminants occur and whether the contaminants need to be regulated.

Water Main Flushing

Distribution mains (pipes) convey water to homes, businesses, and hydrants in your neighborhood. The water entering distribution mains is of very high quality; however, water quality can deteriorate in areas of the distribution mains over time. Water main flushing is the process of cleaning the interior of water distribution mains by sending a rapid flow of water through the mains.

Flushing maintains water quality in several ways. For example, flushing removes sediments like iron and manganese. Although iron and manganese do not themselves pose health concerns, they can affect the taste, clarity, and color of the water. Additionally, sediments can shield microorganisms from the disinfecting power of chlorine, contributing to the growth of microorganisms within distribution mains. Flushing helps remove stale water and ensures the presence of fresh water with sufficient dissolved oxygen and disinfectant levels, and an acceptable taste and smell.

During flushing operations in your neighborhood, some short-term deterioration of water quality, though uncommon, is possible. You should avoid tap water for household uses at such times. If you do use the tap, allow your cold water to run for a few minutes at full velocity before use and avoid using hot water, to prevent sediment accumulation in your hot water tank.

Please contact us if you have any questions or if you would like more information on our water main flushing schedule.

Definitions

90th %ile: The levels reported for lead and copper represent the 90th percentile of the total number of sites tested. The 90th percentile is equal to or greater than 90% of our lead and copper detections.

AL (Regulatory Action Level): The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs (SMCLs) are set to protect the odor, taste and appearance of drinking water.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. EPA.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. NA: Not applicable

ND (Not detected): Indicates that the substance was not found by laboratory analysis.

NS: No standard

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of

water. Turbidity in excess of 5 NTU is just noticeable to the average person.

PDWS (Primary Drinking Water Standard): MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

PHG (Public Health Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California EPA.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

 μ S/cm (microsiemens per centimeter): A unit expressing the amount of electrical conductivity of a solution.

Treatment Technique Violation

Violation Type: Operation Evaluation Level (OEL)

Explanation: Exceedance of the 80 ppb MCL for TTHM; the OEL was 81 ppb

Date and Length of Violation: Sample collected on 08/14/2019

Steps Taken to Correct Violation: Increased water flow through GAC system

Total organic carbon (TOC) has no health effects. However, total organic carbon provides a medium for the formation of disinfection by-products. These by-products include trihalomethanes (THMs) and haloacetic acids (HAAs). Drinking water containing these by-products in excess of the MCL may lead to adverse health effects, liver or kidney problems, or nervous system effects, and may lead to an increased risk of cancer.