ATTACHMENT 7 ## Consumer Confidence Report Certification Form (to be submitted with a copy of the CCR) (to certify electronic delivery of the CCR, use the certification form on the State Board's website at http://www.waterboards.ca.gov/drinking water/certlic/drinkingwater/CCR.shtml) | Water System Name: | | RIVERSIDE COUNTY SERVICE AREA # 62 | | | | | | | |-------------------------------|--|---|----------------------------------|---|--|--|--|--| | Water System Number: | | 3301577 | | | | | | | | <u>JUN</u>
Furthe
compl | NE 26,
er, the s | 2017
system certification on the control of con | to ies that the | reby certifies that its Consumer Confidence Report was distributed on customers (and appropriate notices of availability have been given). It information contained in the report is correct and consistent with the susly submitted to the State Water Resources Control Board, Division | | | | | | Certified by: Name: | | | STEVE JONES | | | | | | | | | Signatu | ıre: | State Jan | | | | | | | | Title: | | MANAGER | | | | | | Phone | | Phone | Number: | (760) 922-4909 Date: JUNE 26, 2017 | | | | | | all iter | ns that
CCR v | apply and fi
was distribut | <i>ll-in where</i>
ted by mai | and good-faith efforts taken, please complete the below by checking eappropriate: il or other direct delivery methods. Specify other direct delivery | | | | | | | | faith" effort | | ed to reach non-bill paying consumers. Those efforts included the | | | | | | | Posting the CCR on the Internet at www | | | | | | | | | | Mailing the CCR to postal patrons within the service area (attach zip codes used) | | | | | | | | | | Advertising the availability of the CCR in news media (attach copy of press release) | | | | | | | | | | | Publication of the CCR in a local newspaper of general circulation (attach a copy of the published notice, including name of newspaper and date published) | | | | | | | | | | Posted the C | CR in pub | lic places (attach a list of locations) | | | | | | | | | | opies of CCR to single-billed addresses serving several persons, such ses, and schools | | | | | | | | Delivery to | community | organizations (attach a list of organizations) | | | | | | | | Other (attach | n a list of o | other methods used) | | | | | | | | | | 00,000 persons: Posted CCR on a publicly-accessible internet site at | | | | | | | For privately-owned utilities: Delivered the CCR to the California Public Utilities Commission | | | | | | | | This form is provided as a convenience and may be used to meet the certification requirement of section 64483(c), California Code of Regulations. # 2016 Consumer Confidence Report Water System Name: RIVERSIDE COUNTY SERVICE AREA # 62 RIPLEY Report Date: JUNE 9, 2017 We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2016 and may include earlier monitoring data. Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien. Type of water source(s) in use: _____ The water is from Wells. Name & general location of source(s): Well # 1 (School Road Well) is the primary well. Well # 2 is an equal size and quality used as A backup source. Drinking Water Source Assessment information: A source water assessment was conducted for Well #1 and Well #2 in February 2001. Well #2 is considered most vulnerable to the following activities not associated with any detected contaminants: Historic gas stations. A copy of the complete assessment can be viewed at Riverside County Environmental Health Dept (760) 863-7570 Time and place of regularly scheduled board meetings for public participation: The County Service Area Advisory Committee Meet on the 2nd Wednesday quarterly beginning in January at 5:30 in the Ripley Community Center For more information, contact: Steve H. Jones Phone: (760) 922-4909 #### TERMS USED IN THIS REPORT Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA). **Public Health Goal (PHG)**: The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **Primary Drinking Water Standards (PDWS)**: MCLs and MRDLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements. Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels. **Treatment Technique (TT)**: A required process intended to reduce the level of a contaminant in drinking water. **Regulatory Action Level (AL)**: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions. ND: not detectable at testing limit **ppm**: parts per million or milligrams per liter (mg/L) **ppb**: parts per billion or micrograms per liter (μg/L) ppt: parts per trillion or nanograms per liter (ng/L) ppq: parts per quadrillion or picogram per liter (pg/L) pCi/L: picocuries per liter (a measure of radiation) The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. #### Contaminants that may be present in source water include: - *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - Pesticides and herbicides, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems. - Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, the USEPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. Tables 1, 2, 3, 4, 5, 7, and 8 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. | TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA | | | | | | | | | | | |--|---|----------------------------|---|--|----------|---------------|---|--|--|--| | Microbiological Contaminants (complete if bacteria detected) | Highest No.
of
Detections | No. of months in violation | | MCL | | MCLG | Typical Source of Bacteria | | | | | Total Coliform Bacteria | (In a mo.) | 0 | | More than 1 sample in a month with a detection | | 0 | Naturally present in the environment | | | | | Fecal Coliform or <i>E. coli</i> | (In the year) | 0 | | A routine sample and a repeat sample detect total coliform and either sample also detects fecal coliform or <i>E. coli</i> | | 0 | Human and animal fecal waste | | | | | TABLE 2 | TABLE 2 – SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER | | | | | | | | | | | Lead and Copper
(complete if lead or copper
detected in the last sample set) | Sample
Date | No. of samples collected | 90 th
percentile
level
detected | No. sites
exceeding
AL | AL | PHG | Typical Source of Contaminant | | | | | Lead (ppb) | 9/15 | 5 | ND | 0 | 15 | 0.2 | Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits | | | | | Copper (ppm) | 9/15 | 5 | 0.070
mg/L | 0 | 1.3 | 0.3 | Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives | | | | | | TABLE 3 | - SAMPL | ING RESU | ULTS FOR | SODIUM A | AND HARDI | NESS | | | | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | | | | Sodium (ppm) | 8/16 | 270 | | N/A | none | none | Salt present in the water and is generally naturally occurring | | | | | Hardness (ppm) | 8/16 | 550 | | N/A | none | none | Sum of polyvalent cations present
in the water, generally magnesium
and calcium, and are usually | | | | ^{*}Any violation of an MCL or AL is asterisked. Additional information regarding the violation is provided later in this report. | TABLE 4 – DETECTION OF CONTAMINANTS WITH A PRIMARY DRINKING WATER STANDARD | | | | | | | | |---|----------------|-------------------|------------------------|---------------|--------------------------|---|--| | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL
[MRDL] | PHG
(MCLG)
[MRDLG] | Typical Source of Contaminant | | | Fluoride
(ppm) | 8/16 | 0.3 | N/A | 2 | 1 | Erosion of natural deposits | | | Trihalomethanes (ppb) | 8/16 | 32
ppb | 30-33
ppb | 80 ppb | N/A | By-product of drinking water disinfection | | | 1,2 Dichloropropane (ppb) | 8/16 | 0.76
ppb | NA | 5 ppb | 0.5 ppb | Discharge from industrial chemical factories; primary component of some fumigants | | | HAA5 (ppb) | 8/16 | 2.60
ppb | ND-5.2
ppb | 60 ppb | N/A | By-product of drinking water disinfection | | | Barium | 8/16 | 41
ppb | NA | 1000 | 2000 | Discharge of oil drilling wastes
and from metal refineries;
erosion of natural deposits | | | TABLE 5 – DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD | | | | | | | | | Chemical or Constituent (and reporting units) | Sample
Date | Level
Detected | Range of
Detections | MCL | PHG
(MCLG) | Typical Source of Contaminant | | | Iron (ppb)
After Treatment Plant | 2016
2016 | 240 ppb
ND | 190-320
ND | 300 ppb | N/A | Leaching from natural deposits | | | Manganese (ppb) After Treatment Plant | 2016
2016 | 268 ppb
ND | 250-280
ND | 50 ppb | N/A | Leaching from natural deposits | | | Sulfate*
(ppm) | 8/16 | 500 | N/A | 500 ppm | N/A | Leaching from natural deposits | | | Chloride (ppm) | 8/16 | 220 | N/A | 500 ppm | N/A | Runoff / leaching from natural deposits | | | Turbidity
(NTU) | 8/16 | 1.2 NTU | | 5 NTU | N/A | Runoff / leaching from natural deposits | | | Specific Conductance* (uS/cm) | 8/16 | 2300
uS/cm | - | 1600
uS/cm | - | Substances that form ions when in water; Seawater influence | | | MBAS (ppb) | 8/16 | ND | - | 500 ppb | - | Municipal and industrial waste discharges | | | Total Dissolved Solids* (ppm) | 8/16 | 1400
ppm | - | 1000
ppm | - | Runoff / leaching from natural deposits | | | Color
(Color Units) | 8/16 | 10 | - | 15 | - | Naturally-occurring organic materials | | ^{*}Any violation of an MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report. ### Additional General Information on Drinking Water Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791). Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Riverside County Service Area 62 is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead. # Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement | VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT | | | | | | | | | |---|--------------------------------|----------|---|----------------------------|--|--|--|--| | Violation | Explanation | Duration | Actions Taken to Correct
the Violation | Health Effects
Language | | | | | | Secondary MCL
Sulfate | Natural leaching from deposits | On Going | | | | | | | | Secondary MCL
Specific Conductance | Natural leaching from deposits | On Going | | | | | | | | Secondary MCL
TDS | Natural leaching from deposits | On Going | | | | | | | | | | | | | | | | | The Ripley Water treatment Plant is reducing and or eliminating the Iron & Manganese present in the groundwater. The Sulfate is still above the secondary Standards. The Total Dissolved Solids Concentration at 1400 mg/L exceeds the MCL of 1000 mg/L. The Specific Conductance of 2200 uS/cm exceeds the MCL of 1600 uS/cm. These are secondary MCL violation and may cause taste, odor and other problems, but are not to be considered to be harmful to health. Iron and Manganese continue to be sampled with the operation of the Water Treatment Plant and the water produced has consistently tested a non-detect for these secondary contaminants. The Service Area continues to monitor the Disinfection By-Products that occur with the addition of Chlorine to precipitate Iron and Manganese from the well water. Notice of violations will be delivered to residents in the affected areas if they occur.