2017 Consumer Confidence Report

Water System Name: Tooleville Mutual Non-Profit Water Report Date: July 1, 2018 Association, Inc.

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2017 and may include earlier monitoring data.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alguien que lo entienda bien.

Type of water source(s) in use: Groundwater – Well water

Name & general location of source(s): Morgan Well, East end of Morgan St. and Alfred Well, North of Alfred St.

Drinking Water Source Assessment information:

Completed by the Tulare County Department of Health Services. A source water assessment was conducted for the water supply well in December 2002.

The activities to which the Tooleville water system is most vulnerable include a nitrate plume, historic leaking fuel tanks, sewer systems, and agricultural activity and drainage. The property is within three pesticide management zones: bromacil, diuron and simazine. The well sites are surrounded by citrus groves, pasture land, and residential development. The leaking fuel tanks (in the 10-year time of travel zone) have been removed and remediation has been completed on the site. A copy of the complete assessment may be viewed at the office of Environmental Health Services, 5957 S. Mooney Blvd., Visalia, CA 93277.

Time and place of regularly scheduled board meetings for public participation: 4th Tuesdays of February, April, June, August, October, December at the Water Company Trailer on Alfred (6:00pm); please call to confirm.

For more information, contact: Ruben Salazar

Phone: (559) 909-2098

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (U.S. EPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Variances and Exemptions: State Board permission to exceed an MCL or not comply with a treatment technique under certain conditions.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an *E. coli* MCL violation has

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant	occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
below which there is no known or expected risk to	ND: not detectable at testing limit
health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.	ppm: parts per million or milligrams per liter (mg/L)
	ppb : parts per billion or micrograms per liter (μ g/L)
Primary Drinking Water Standards (PDWS): MCLs and MRDLs for contaminants that affect health along	ppt : parts per trillion or nanograms per liter (ng/L)
with their monitoring and reporting requirements, and	ppq: parts per quadrillion or picogram per liter (pg/L)
water treatment requirements.	pCi/L: picocuries per liter (a measure of radiation)

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides*, that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- *Radioactive contaminants*, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Resources Control Board (State Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Tables 1, 2, 3, 4, 5, and 6 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old. Any violation of an AL, MCL, MRDL, or TT is asterisked. Additional information regarding the violation is provided later in this report.

TABLE 1 – SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA								
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Source of Bacteria			
*Total Coliform Bacteria (state Total Coliform Rule)	3 (In a mo.)	3	1 positive monthly sample	0	Naturally present in the environment			
Fecal Coliform or <i>E.</i> <i>coli</i> (state Total Coliform Rule)	0 (In the year)	0	A routine sample and a repeat sample are total coliform positive, and one of these is also fecal coliform or <i>E. coli</i> positive	0	Human and animal fecal waste			

Consumer Confidence Report

<i>E. coli</i> (federal Revised Total Coliform Rule) (a) Routine and repeat samples following <i>E. co</i> <i>coli</i> .	(In the year) amples ar <i>li</i> -positiv	(a) re total coliform-positive and either is <i>E. coli</i> -po re routine sample or system fails to analyze total		0 ositive or syst l coliform-po	Human and animal fecal waste em fails to take repeat sitive repeat sample for <i>E</i> .			
TABLE 2 – SA	AMPLIN	G RESU	LTS SHOW	VING THE	DETI	ECTIO	N OF LEAD	AND COPPER
Lead and Copper (complete if lead or copper detected in the last sample set)	Samp le Date	No. of Sampl es Collect ed	90 th Percent ile Level Detecte d	No. Sites Exceedin g AL	AL	PH G	No. of Schoo Requesting Lead Sampling	
Lead (ppb)	0	0	0	0	15	0.2		Internal corrosion of household water plumbing systems; discharges from industrial manufacturers; erosion of natural deposits
Copper (ppm)	7/16/1 3	0	0	0	1.3	0.3	Not applicable	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives

Т	TABLE 3 – SAMPLING RESULTS FOR SODIUM AND HARDNESS							
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant		
Sodium (ppm)	7/16/13	145	90-200	none	none	Salt present in the water and is generally naturally occurring		
Hardness (ppm)	7/16/13	430	300-560	none	none	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring		
TABLE 4 – DETEC	TION OF	CONTAMINA	NTS WITH A	PRIMAR	<u>Y</u> DRINKI	NG WATER STANDARD		
Chemical or Constituent (and reporting units)	Sample Date	Level Detected	Range of Detections	MCL [MRD L]	PHG (MCLG) [MRDL G]	Typical Source of Contaminant		
Nitrate, ppm	1/27/14, 5/13/14, 8/27/14, 10/29/1 4, 12/12/1 4,	8.4	4.7-8.7	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits		

	11/6/15, 12/9/15, 4/14/16, 9/9/16, 12/16/1 6 2/15/17					
Gross Alpha, pCi/L	1/27/14, 5/13/14	1.93	0 - 4.97	15.00	NA	Erosion of Natural deposits
Arsenic, ppb	7/16/13	ND	ND	10	ND	Erosion of natural deposits; runoff from orchards
*Hexavalent Chromium, ppb		11	11-13	10	0.02	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits.
Total Trihalomethanes, ppb	8/6/14, 9/9/15 6/23/16	2.6	2.6	80	N/A	By-product of drinking water disinfection
Total Haloacetic Acids (HAA), ppb	8/6/14, 9/9/15 6/23/16	ND	ND	60	N/A	By-product of drinking water disinfection
Flouride, ppm	7/16/13	0.23	0.21 to 0.24	2.00	N/A	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories
Barium, ppm	7/16/13	0.09	0.051 to 0.13	1	N/A	Discharges of oil drilling wastes and from metal refineries; erosion of natural deposits
1,2- Dichlorobenzenem, ppb	7/22/09	96	96	600	600	Discharge from industrial chemical factories. Some people who drink water containing 1,2- dichlorobenzene in excess of the MCL over many years may experience liver, kidney, or circulatory system problems.
Selenium, ppb	7/16/13	6	2.9 to 9	50	(50)	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots (feed additive). Selenium is an essential nutrient. However, some people who

TABLE 5 - DETE	CTION OF C	ONTAMINA	NTS WITH A	SECONDA	RY DRINK	drink water containing selenium in excess of the MCL over many years may experience hair or fingernail losses, numbness in fingers or toes, or circulation system problems.	
Chemical or Constituent (and reporting units	Sample	Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Source of Contaminant	
Chromium, Total (ppb)	7/16/13	12.5	12 to 13	50	(100)	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits	
Specific Conductance (micromhos)	7/22/09	1570	940 to 2200	1600	NA	Substances that form ions when in water; seawater influence	
Sulfate (mg/L)	7/22/09	40	36 to 44	500	NA	Runoff/leaching from natural deposits; industrial wastes	
Chloride	7/22/09	380	160 to 600	500	NA	Runoff/leaching from natural deposits; seawater influence	
Total Dissolved Solids	7/22/09	825	490 to 1200	1000	NA	Runoff/leaching from natural deposits	
	TABLE (- DETECTI	ON OF UNREG	ULATED CO	ONTAMINA	NTS	
Chemical or Constituent	Sample Date	Level Detected	Range of Detections	PHG		Health Effects Language	
Hexavalent Chromium	10/29/14, 12/12/14, 12/22/14, 7/17/15, 12/9/15, 9/9/16, 12/16/16 3/20/17	11	11-13	0.02 ppb	hexavaler over man	me people who drink water containing cavalent chromium in excess of the MCI er many years may have an increased c of getting cancer.	
Trichloropropane (1,2,3-TCP) ppt	9/6/11	ND	ND	5 ppt	1,2,3-tric notificat have an cancer, t animals.	Some people who use water containing 1,2,3-trichloropropane in excess of the notification level over many years may have an increased risk of getting cancer, based on studies in laboratory animals.	

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. EPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. U.S. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead-Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. <u>TOOLEVILLE MUTUAL NON-PROFIT WATER</u> <u>ASSOCIATION, INC</u> is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. [Optional: If you do so, you may wish to collect the flushed water and reuse it for another beneficial purpose, such as watering plants.] If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (1-800-426-4701) or at <u>http://www.epa.gov/lead</u>.

Nitrates above the MCL

A NOTE regarding NITRATES in our water: Historically, Tooleville water has been high in nitrates (as nitrogen) above 5 mg/L, but below 10 mg/L: For this reason, the water system in pursuing an alternative source of drinking water. However, due to the natural movement or groundwater, nitrate levels in a well can fluctuate. During 2017, all the water samples taken from our wells met the State and Federal standard for Nitrate.

Nitrate in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such nitrate levels in drinking water can interfere with the capacity of the infant's blood to carry oxygen, resulting in serious illness; symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of the blood to carry oxygen in other individuals, such as pregnant women and those with specific enzyme deficiencies. If you are caring for an infant, or you are pregnant, you should ask advice from your health care provider.

Hexavalent Chromium above the MCL

What is Hexavalent Chromium and why is there a public health concern? Chromium is a heavy metal that occurs throughout the environment. The Trivalent form is a required nutrient and has very low toxicity. The hexavalent form, also commonly known as Chromium-6, is more toxic and has been known to cause cancer when inhaled. In recent scientific studies in laboratory animals, Hexavalent Chromium has also been linked to cancer when ingested.

If my drinking water has Hexavalent Chromium above the PHG, is there a risk to my health? A drinking water sample with a detection of Hexavalent Chromium above the PHG of 0.02 ppb does not necessarily represent a public health concern. The PHG is based on a cancer risk of no more than one case of cancer per one million people. The PHG tries to account for persons at three different stages in their lives by including protection factors to account for age and by applying higher rates of water consumption in their calculation. The PHG represents the level of Hexavalent Chromium at which no adverse health effects would be anticipated over an entire lifetime of exposure to the most sensitive population. So, a PHG is not a boundary line between a "safe" and "dangerous" level of a chemical, and drinking water is frequently demonstrated as safe to drink even if it contains chemicals at levels exceeding their PHGs. OEHHA provides additional information on potential health risks and its PHG on its website.

For 2018 and until a new MCL is adopted, hexavalent chromium results will not be required to be included in the CCR. However, the State Water Resources Control Board (Water Board) recommends that any hexavalent chromium results that are collected by a PWS be reported in the CCR. The Water Board also recommends that the PWS provide some type of notification that explains what happened regarding the hexavalent chromium MCL and what the PWS is doing in the interim while the Board is establishing a new MCL.

Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity.

VIOLATION OF A MCL, MRDL, AL, TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken to Correct the Violation	Health Effects Language					
*Hexavalent Chromium	Discharge from electroplating factories, leather tanneries, wood preservation, chemical synthesis, refractory production, and textile manufacturing facilities; erosion of natural deposits	1	There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017. One of our wells tested at 11 ppb, the other tested at non- detect. We are monitoring quarterly, as required by the State Water Resource Control Board.	Some people who drinking water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer.					
Total Coliform Bacteria	Naturally present in the environment	3	We have adopted improved disinfection procedures to ensure that this will not occur again. Coliform were found in more samples than allowed and this was a warning of potential problems.	Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially-harmful, bacteria may be present. Coliforms were found in more samples than allowed and this was a warning of potential problems.					

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement